Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Soái muội
Xem chi tiết
Phó Đình Hào
Xem chi tiết
nguyễn như quỳnh
Xem chi tiết
BiBo MoMo
Xem chi tiết
Nyatmax
25 tháng 12 2019 lúc 20:24

We have:

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y+3\right)^2=-y^2+1\)

\(\Rightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow-1\le x+y+3\le1\)

\(\Rightarrow2015\le x+y+2019\le2017\)

Sign '=' happen when \(x=-4;x=-2;y=0\)

Khách vãng lai đã xóa
Wang Karry
Xem chi tiết
ngonhuminh
11 tháng 2 2017 lúc 8:33

Mình biết hơi muộn

\(A=x^2+2xy+6x+6y+2y^2+8\Leftrightarrow x^2+2xy+6x+6y+y^2+9-1\)

\(A=0\Rightarrow\left(x+y+3\right)^2+y^2-1=0\)

\(\Rightarrow-1\le x+y+3\le1\) .

\(\Rightarrow2012\le x+y+3+2013\le2014\)

\(\Rightarrow2012\le B\le2014\)

ONLINE SWORD ART
Xem chi tiết
Zin Trang
Xem chi tiết
Vũ Ngọc Mai
Xem chi tiết
Nguyễn Tiến Minh
23 tháng 12 2016 lúc 20:39

h mk di minh tra loi noi that

Đinh Trần Thu Hương
24 tháng 12 2016 lúc 22:44

đặt t=x+y

x^2 +2xy+6x+6y+2y^2+8=0

x^2+2xy+y^2+6(x+y)+8= -y^2

(x+y)^2 + 6(x+y)+8 = -y^2

t^2 +6t +8= -y^2

(t+2)(t+4) = -y^2

do y^2 >=0 với mọi y

-y^2 <=0 với mọi y

t^2+6t+8<=0

(t+2)(t+4)<=0

* Trường hợp 1:   t+2<=0 và t+4>=0        (1)

t<=-2 và t>=4

* trường hợp 2:  t+2>=0 và t+4<=0           (2)

t>= -2 và t<= -4   ( vô nghiệm)

 Từ (1), (2) ta có:

-4<= t <=-2 

-4 <= x+y <= -2

-4 + 2016 <= x+y+ 2016 <= -2 +2016

2012 <= x+y +2016 <= 2014

Bmin= 2012

Bmax= 2014

 *Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0

thì x=-4 và y=0

* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0

thì x=-2 và y=0

vậy Bmin= 2012 khi (x,y) = (-4, 0)

Bmax= 2014 khi (x,y)= (-2,0)

Phạm Minh Quang
Xem chi tiết
Yen Nhi
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Khách vãng lai đã xóa