cho (o) với C là tiếp điểm (C khác A và C khác B).kẻ AM vuông góc với d tại M,BN vuông góc với d tại N và CD vuông góc với AB tại D.chứng minh rằng CD2=AM.BN
Cho nửa đường tròn (O) đường kính AB. Một đường thẳng d tiếp xúc với nửa đường tròn đó tịa C. Từ A và B kẻ AM vuông góc với d tại M và BN vuông góc với d tại N. Gọi N là hình chiếu của C trên AB. Chứng minh:
a. CM=CN
b. CD^2 = AM.BN
P/s: không cần vẽ hình đâu :))
Cho tam giác ABC cân tại A,vẽ trung tuyến AM.Từ M kẻ ME vuông góc với AB tại E,kẻ MF vuông góc với AC tại F a) Chứng minh:BEM=CFM b)Chứng minh: AM là trung trực của EF c) Từ B kẻ đường thẳng vuông góc với AB tại B,từ C kẻ đường thẳng vuông góc với AC tại C,hai đường thẳng này cắt nhau tại D.Chứng minh rằng ba điểm A,M,D thẳng hàng
a) Chứng minh:BEM=CFM
Xét tam giác BEM và tam giác CFM, có:
- góc BEM = góc CFM = 90 độ (do ME vuông góc AB; MF vuông góc AC)
- MB = MC (AM là trung tuyến, trung trực của tam giác ABC)
- góc B = góc C (do tam giác ABC cân tại A)
=> tam giác BEM và tam giác CFM (tam giác vuông có cạnh huyền, góc nhọn bằng nhau) (đpcm)
b)Chứng minh: AM là trung trực của EF
Gọi I là điểm giao nhau của AM và EF
Xét tam giác AEI và tam giác AFI, có
- AE = AF (do AE = AB - EB, AF = AC - FC; mà AB = AC co tam giác ABC cân, EB = FC do tam giác BEM = tam giác CFM)
- góc EAI = góc FAI (do AM là trung tuyến, trung trực, phân giác của tam giác cân ABC)
- cạnh AI chung
=> tam giác AEI = tam giác AFI
=> AR = AF =>tam giác AEF cân tại F (1)
Thêm nữa: IE = IF => I là trung điểm của EF (2)
Từ (1) và (2) => AI là trung tuyến của tam giác cân AEF, và cũng là là trung trực của tam giác AEF
=> AI vuông góc EF tại I
mà A,I,M thẳng hàng
=> AM là trung trực của EF
c) Từ B kẻ đường thẳng vuông góc với AB tại B,từ C kẻ đường thẳng vuông góc với AC tại C,hai đường thẳng này cắt nhau tại D.Chứng minh rằng ba điểm A,M,D thẳng hàng
Xét tam giác vuông ABD và tam giác vuông ACD, có
- AB = AC
- BAD = CAD
- AD chung
=> tam giác vuông ABD = tam giác vuông ACD
=> DB = DC
=> tam giác DBC cân tại D
mà M là trung điểm BC
=> DM là trung trực, trung tuyến, phân giác của tam giác cân DBC
=> góc BMD = 90 độ
Ta có góc AMB = 90 độ; góc BMD = 90 độ
=> góc AMB + góc BMD = 90 độ + 90 độ = 180 độ
=> 3 điểm A,M,D thẳng hàng
a) do tam giac abc can tai a (gt)
-> ab=ac(t/c)
-> goc b=goc c(t/c)
theo gt am la trung tuyen
->m la trung diem cua bc
->bm=cm=bc/2 (t/c)
xet tam giac bem va tam giac cem co:
goc bem=cem=90 do
goc b=goc c (cmt)
bm=cm (cmt)
-> tam giac bem = tam giac cem (ch-gn)
cau a cua co giao lan thieu
a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN
b) Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và qua N kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD
Cho ΔABC cân tại C ( C<90). Kẻ AM vuông góc với BC tại M, BN vuông góc với AC tại N.
Gọi giao điểm của AM và BN là K.
1) Chứng minh rằng ΔCAM = ΔCBN và CK là tia phân giác góc ACB.
2) Chứng minh MN//AB.
3) Kéo dài CK cắt AB tại D. Biết AB = 10cm, AC = 12cm. Tính CD.
4) Chứng minh ND = 1/2 AB
1: Xét ΔCAM vuông tại M và ΔCBN vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCAM=ΔCBN
Suy ra: CM=CN; AM=BN
Xét ΔCNK vuông tại N và ΔCMK vuông tại M có
CN=CM
CK chung
Do đó: ΔCNK=ΔCMK
Suy ra: \(\widehat{NCK}=\widehat{MCK}\)
hay CK là tia phân giác của góc ACB
2: Xét ΔCAB có CN/CA=CM/CB
nên MN//AB
3: AB=10cm
nên AD=DB=5cm
\(CD=\sqrt{12^2-5^2}=\sqrt{119}\left(cm\right)\)
cho đường tròn (o) đường kính AB và đường thẳng d là tiếp tuyến của đường tròn kẻ từ B. trên d lấy hai điểm nằm khác phía với điểm B và BC<BD.AC cắt (o) tại E, AD cắt (o) tại F.(E,F khác A) đường thẳng kẻ qua A vuông góc với EF cắt CD tại M.
a) chứng minh tứ giác CEFD nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác CEFD. chứng minh IM vuông góc với CD.
c) gọi P là giao điểm của FE và CD. PA cắt đường tròn (o) tại K (K khác A) c/m K,B,I thẳng hàng
Cho tam giác ABC cân tại A,vẽ trung tuyến AM.Từ M kẻ ME vuông góc với AB tại E,kẻ MF vuông góc với AC tại F
a) Chứng minh:BEM=CFM
b)Chứng minh: AM là trung trực của EF
c) Từ B kẻ đường thẳng vuông góc với AB tại B,từ C kẻ đường thẳng vuông góc với AC tại C,hai đường thẳng này cắt nhau tại D.Chứng minh rằng ba điểm A,M,D thẳng hàng
\(Cho tam giác CDE vuông tại C, đường cao CH. Kẻ HA vuông góc với CD, HB vuông góc với CE. Biết CH=9cm, DH= 4 cm a) tính AB,HE, góc D b) chứng minh CA.CD=CB.CE c) Kẻ AM và BN vuông góc với AB. Chứng minh M,N lần lượt là trung điểm của DH và HE d) Tính diện tích tứ giác ABNM\)
a: Xét tứ giác CAHB có góc CAH=góc CBH=góc ACB=90 độ
nen CAHB là hình chữ nhật
SUy ra: AB=CH=9cm
\(HE=\dfrac{9^2}{4}=\dfrac{81}{4}=20.25\left(cm\right)\)
b: Xét ΔCHD vuông tại H có HA là đường cao
nên \(CA\cdot CD=CH^2\left(1\right)\)
Xét ΔCHE vuông tại H có HB là đường cao
nên \(CB\cdot CE=CH^2\left(2\right)\)
TỪ (1) và (2) suy ra \(CA\cdot CD=CB\cdot CE\)
Cho ΔABC cân tại C (C<900 ). Kẻ AM vuông góc với BC tại M, BN vuông góc với AC tại N.
Gọi giao điểm của AM và BN là K.
1) Chứng minh rằng ΔCAM = ΔCBN và CK là tia phân giác góc ACB.
2) Chứng minh MN//AB.
3) Kéo dài CK cắt AB tại D. Biết AB = 10cm, AC = 12cm. Tính CD.
4) Chứng minh ND = \(\dfrac{1}{2}AB\)
1) Xét \(\Delta CAM\) vuông tại M và \(\Delta CBN\) vuông tại N:
\(\widehat{C}chung.\)
\(AC=BC\) (\(\Delta ABC\) cân tại C).
\(\Rightarrow\) \(\Delta CAM=\) \(\Delta CBN\left(ch-gn\right).\)
Xét \(\Delta ABC\) cân tại C:
BN là đường cao \(\left(BN\perp AC\right).\)
AM là đường cao \(\left(AM\perp BC\right).\)
K là giao điểm của AM; BN (gt).
\(\Rightarrow\) K là trực tâm.
\(\Rightarrow\) CK là đường cao từ đỉnh C.
\(\Rightarrow\) CK là tia phân giác \(\widehat{ACB}\) (Tính chất tam giác cân).
2) \(\Delta CAM=\) \(\Delta CBN\left(cmt\right).\)
\(\Rightarrow CM=CN\) (2 cạnh tương ứng).
\(\Rightarrow\) \(\Delta CNM\) cân tại C.
\(\Rightarrow\) \(\widehat{CNM}=\dfrac{180^o-\widehat{C}}{2}.\)
Mà \(\widehat{CAB}=\dfrac{180^o-\widehat{C}}{2}\) (\(\Delta ABC\) cân tại C).
\(\Rightarrow\) \(\widehat{CNM}=\widehat{CAB}.\)
\(\Rightarrow MN//AB\left(dhnb\right).\)
3) Xét \(\Delta ABC\) cân tại C:
CD là đường cao (cmt).
\(\Rightarrow\) CD là đường trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) D là trung điểm của AB.
\(\Rightarrow\) \(AD=\dfrac{1}{2}AB=\dfrac{1}{2}10=5\left(cm\right).\)
Xét \(\Delta ACD\) vuông tại D:
\(AC^2=CD^2+AD^2\left(Pytago\right).\\ \Rightarrow12^2=CD^2+5^2.\\ \Rightarrow CD^2=119.\\ \Rightarrow CD=\sqrt{119}\left(cm\right).\)
Cho điểm M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N.
a) Chứng minh DC = DN
b) Chứng minh AC là tiếp tuyến của đường tròn tâm O
c) Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm MH. Chứng minh B, C, I thẳng hàng.
d) Qua O kẻ đường vuông góc với AB, cắt (O) tại K (K và M nằm khác phía với đường thẳng AB). Tìm vị trí của M để diện tích tam giác MHK lớn nhất.
các chế không nên nghĩ bởi vì SUY NGHĨ CÀNG LÂU, QUYẾT ĐỊNH CÀNG NGU