Phân tích các đa thức sau
a/ 1-6x^2
b/ 5x(x+3)-7(3+x)
a)rút gon các đa thức sau: (x+3)(x – 3) – (x – 3)2
b) phân tích đa thức thành nhân tử: x 2 – y 2 – 5x +5y
\(a,=x^2-9-x^2+6x-9=6x-18\\ b,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)
phân tích đa thức
x^4+6x^3+11x^2+6x+1
x^4+x^3+x^2+x+1
6x^4+5x^3-38x^2+5x+6
x^4+5x^3-12x^2+5x+1
a)\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+6x+2x^2\)
\(=\left(x^2+3x+1\right)^2\)
\(x^4+5x^3-12x^2+5x+1\)
\(=\left(x^4-2x^3+x^2\right)+\left(7x^3-14x^2+7x\right)+\left(x^2-2x+1\right)\)
\(=x^2\left(x^2-2x+1\right)+7x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)\)
\(=\left(x^2+7x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x^2+7x+1\right)\left(x-1\right)^2\)
Phân tích các đa thức sau thành nhân tử:
1. \(x^3-x^2+5x+125\)
2. \(x^2+2x^2-6x-27\)
1.
= (x^3 + 125 ) -(x^2 +5x)
=(x +5) (x^2 -5x +25) -x(x+5)
=(x+5)(x^2 -5x +25 -x)
=(x+5)(x^2 -6x +25)
2.
= (x^3 -27) + (2x^2 -6x)
=(x-3) (x^2 +3x +9) +2x (x-3)
=(x-3) (x^2 +3x +9 +2x)
=(x-3) (x^2 +5x +9)
1) Phân tích các đa thức sau thành nhân tử
a) 6x^2-11xy+3y^2
b) x^4-3x^3+6x^2-5x+3
2) Cho a, b, c là độ dài 3 cạnh của 1 tam giác
CMR a^4+b^4+c^4<2a^2b^2+2b^2c^2+2c^2a^2
a) \(6x^2-11xy+3y^2=6x^2-2xy-9xy+3y^2=2x.\left(3x-y\right)-3y.\left(3x-y\right)\)
= \(\left(3x-y\right).\left(2x-3y\right)\)
b) PP: dùng hệ số bất định
ta có: x^4 -3x^3+6x^2-5x+3=(x^2+ax-1)(x^2 +bx-3) (*)
=x^4 +bx^3-3x^2+ax^3 +(a+b)x^2 -3ax -x^2-bx+3
=x^4 +(b+a)x^3 +(a+b-3-1)x^2 -(3a+b)x +3
=> a+b=-3
a+b-4=6
3a+b=5
<=> a=7/2 ;b=13/2 thay vào (*) ta đc: x^4 -3x^3+6x^2-5x+3=(x^2+\(\frac{7}{2}\).x -1)(x^2 +\(\frac{13}{2}\).x -3)
Hay x^4 -3x^3+6x^2-5x+3= \(\frac{1}{4}.\left(2x^2+7x-2\right)\left(2x^2+13-6\right)\)
phân tích đa thức
a)x^4+6x^3+11x^2+6x+1
b)x^4+x^3+x^2+x+1
c)6x^4+5x^3-38x^2+5x+6
d)x^4+5x^3-12x^2+5x+1
dễ mà bạn xin 20 phút làm ra giấy nhé :))
a) \(\left(x^4+6x^3+9x^2\right)+2x^2+6x+1\)
\(\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(\left(x^2+3x+1\right)^2\)
b) \(x^4+x^3+x^2+x+1\)
câu b, chúa sẽ c/m x ko tồn tại , và nó là 1 đa thức bất khả Q . trong R
vì lớp 8 chưa học đến số phức
\(x^4+x^3=-x^2-x-1\)
\(x^4+x^3+\frac{1}{4}x^2=\left(\frac{1}{4}x^2-x^2\right)-x-1\)
\(\left(x^2+\frac{1}{2}x\right)^2=-\frac{3}{4}x^2-x-1\)
\(4\left(x^2+\frac{1}{2}x\right)^2=-3x^2-4x-4\)
\(\Delta`=\left(-2\right)^2-\left(-4\right).\left(-3\right)=4-12< 0\)
denta < 0 x vô nghiệm
vậy đa thức trên ko thể phân tích và nó là 1 đa thức bất khả Q
c) ,
\(\left(6x^4-12x^3\right)+\left(17x^3-34x^2\right)-\left(4x^2-8x\right)-\left(3x-6\right)\)
\(6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)
\(\left(x-2\right)\left(6x^3+17x^2-4x-3\right)\)
\(\left(x-2\right)\left\{\left(6x^3+18x^2\right)-\left(x^2+3x\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left\{6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)\)
\(\left(x-2\right)\left(x+3\right)\left\{\left(6x^2+\frac{6}{3}x\right)-\left(\frac{9}{3}x+\frac{9}{9}\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left\{6x\left(x+\frac{1}{3}\right)-\frac{9}{3}\left(x+\frac{1}{3}\right)\right\}\)
\(\left(X-2\right)\left(X+3\right)\left(X+\frac{1}{3}\right)\left(6x-1\right)\)
d)
\(\left(x^4-x^3\right)+\left(6x^3-6x^2\right)-\left(6x^2-6x\right)-\left(x-1\right)\)
\(x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)
\(\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)
\(\left(x-1\right)\left\{\left(x^3-x^2\right)+\left(7x^2-7x\right)+\left(x-1\right)\right\}\)
\(\left(x-1\right)^2\left(x^2+7x+1\right)\)
\(\Delta=49-4=45\)
\(x1,2=\frac{-7+\sqrt{45}}{2},\frac{-7-\sqrt{45}}{2}\)
\(\left(x-1\right)^2\left(x-\frac{7+\sqrt{45}}{2}\right)\left(x-\frac{7-\sqrt{45}}{2}\right)\)
1A. Phân tích các đa thức sau thành nhân tử:
a) x3+2x; b) 3x - 6y;
c) 5(x + 3y)- 15x(x + 3y); d) 3(x-y)- 5x(y-x).
1B. Phân tích các đa thức sau thành nhân tử:
a) 4x2 - 6x; b) x3y - 2x2y2 + 5xy;
c) 2x2(x +1) + 4x(x +1); d) 2 x(y - 1) - 2
y(1 - y).
5 5
2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);
b) x(y - x)3 - y(x - y)2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x(x + y)2 - y(x + y)2 + y2 (x - y).
2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;
b) x(x- y)3 - y(y - x)2 - y2(x - y);
c) x2y-xy2 - 3x + 3y;
d) x(x + y)2 - y(x + y) 2 + xy - x 2 .
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
1B:
a: \(4x^2-6x=2x\left(2x-3\right)\)
b: \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
Phân tích các đa thức sau thành nhân tử
1) x^3+2x-3
2) x^3-6x+4
3) x^3-2x^2+1
4)x^3+5x^2-12
5) x^3-6x+9x
6) 4x^3-9x^2+5x
1) \(x^3+2x-3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3\right)\)
2) \(x^3-6x+4\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-2\right)\)
3) \(x^3-2x^2+1\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x-1\right)\)
4) \(x^3+5x^2-12\)
\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)
\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+3x-6\right)\)
5) \(x^3-6x^2+9x\) (chắc đề như vậy)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)
6) \(4x^3-9x^2+5x\)
\(=x\left(4x^2-9x+5\right)\)
\(=x\left[\left(4x^2-4x\right)-\left(5x-5\right)\right]\)
\(=x\left[4x\left(x-1\right)-5\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(4x-5\right)\)
giúp mik với
nhân các đa thức sau
a, (1/3x + 2 ) (3x - 6 )
b, (x^2 - 3x + 9 ) (x + 3 )
c, ( -2xy + 3 ) ( xy +1 )
d, x ( xy - 1 ) ( xy + 1 )
tính giá trị biểu thức
a, M = ( 3x + 2 ) ( 9x^2 - 6x + 4 ) tại x = 1/3
b, N = ( 5x - 2y ) ( 25x^2 + 10xy + 4y^2 ) tại x= 1/5 và y = 1/2
chứng minh giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến
A= ( x + 2 ) ( 3x - 1 )- x ( 3x + 3 ) - 2x + 7
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
Bài 3:
Ta có: \(A=\left(x+2\right)\left(3x-1\right)-x\left(3x+3\right)-2x+7\)
\(=3x^2-x+6x-2-3x^2-9x-2x+7\)
=5
Phân tích các đa thức bằng phương pháp đồng nhất hệ số
a, 4x^4+4x^3+5x^2+2x+1
b, x^4+6x^3+11x^2+6x+1
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(2x^2\right)^2+2.2x^2.x+x^2+4x^2+2x+1\)
\(=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)
\(=\left(2x^2+x+1\right)^2\)
\(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Chúc bạn học tốt.