Tìm GTNN của
P=x^2-6x+2
Q=4x^2-5x+8
H=3x^2-x
Tìm GTNN
\(A=x^2-2x+5\)
\(B=4x^2+4x+3\)
\(C=9x^2-6x+7\)
D\(=5x^2+3x+8\)
`A=x^2-2x+5`
`=x^2-2x+1+4`
`=(x-1)^2+4>=4`
Dấu "=" `<=>x=1`
`B=4x^2+4x+3`
`=4x^2+4x+1+2`
`=(2x+1)^2+2>=2`
Dấu "=" xảy ra khi `x=-1/2`
`C=9x^2-6x+7`
`=9x^2-6x+1+6`
`=(3x-1)^2+6>=6`
Dấu '=' xảy ra khi `x=1/3`
`D=5x^2+3x+8`
`=5(x^2+3/5x)+8`
`=5(x^2+3/5x+9/100-9/100)+8`
`=5(x+3/10)^2+151/20>=151/20`
Dấu "=" xảy ra khi `x=-3/10`
\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)
\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)
\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)
Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)
\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)
Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)
- A = (x-1)2 + 4 \(\ge4\)
Dấu "=" <=> x = 1
- B = (2x+1)2 +2 \(\ge2\)
Dấu "=" xảy ra <=> x = \(\dfrac{-1}{2}\)
- C = (3x - 1)2 + 6 \(\ge6\)
Dấu "=" <=> x = \(\dfrac{1}{3}\)
- D = \(5\left(x^2+\dfrac{3}{5}x+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
Dấu "=" <=> x = \(\dfrac{-3}{10}\)
Tính GTNN của bt
a/\(9x^2-6x+5\)
b/\(4x^2-5x\)
c/\(3x^2-6x\)
d/\(5x^2-15x\)
e/x2 + 3x + 4
f/ 2x2 - 4x + 7
g/2x2 - 3x
h/3x2 -4x
a, \(A=9x^2-6x+5\)
\(=\left(9x^2-6x+1\right)+4\)
\(=\left(3x-1\right)^2+4\)
ta có:
\(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\forall x\)
Vậy Min A = 4
Để A = 4 thì \(3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(b,B=4x^2-5x\)
\(=\left(4x^2-5x+\dfrac{25}{16}\right)-\dfrac{25}{16}\)
\(=\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\)
TA có:
\(\left(2x-\dfrac{5}{4}\right)^2\ge\forall x\Rightarrow\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\ge-\dfrac{25}{16}\forall x\)Vậy Min B = \(-\dfrac{25}{16}\)
Để B = \(-\dfrac{25}{16}\) thì \(2x-\dfrac{5}{4}=0\Rightarrow2x=\dfrac{5}{4}\Rightarrow x=\dfrac{5}{8}\)
\(c,C=3x^2-6x\)
\(=3\left(x^2-2x+1\right)-3\)
\(=3\left(x-1\right)^2-3\)
Ta có:
\(3\left(x-1\right)^2\ge0\forall x\Rightarrow3\left(x-1\right)^2-3\ge-3\)
vậy Min C = -3
Để C = -3 thì x-1=0 => x = 1
\(d,D=5x^2-15x\)
\(=5\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{45}{4}\)
\(=5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\)
Ta có:
\(5\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)Vậy Min D = \(-\dfrac{45}{4}\)
Để \(D=-\dfrac{45}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(e,E=x^2+3x+4\)
\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
Vậy Min E = \(\dfrac{7}{4}\) khi \(x+\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(f,F=2x^2-4x+7\)
\(=2\left(x^2-2x+1\right)+5\)
\(=2\left(x-1\right)^2+5\ge5\forall x\)
Vậy Min F = 5 khi x - 1 =0 => x = 1
\(g,2x^2-3x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{8}\)
\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\forall x\)
Vậy Min G = \(\dfrac{-9}{8}\) khi \(x-\dfrac{3}{4}=0\Rightarrow x=\dfrac{3}{4}\)
\(h,H=3x^2-4x=3\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}\)
\(=3\left(x-\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)
Vậy Min H = \(-\dfrac{4}{3}\) khi \(x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
a, Tìm GTNN của: A=5x2+4xy+y2+6x+2y+2012
b, Với x>0, Tìm GTNN của M=4x2-3x+\(\frac{1}{4x}\)+2016
1. Tìm x
a) 3x^2 - 6x = 0
b) x^3 - 13x = 0
c) 5x.(x-2001) - x + 2001 = 0
2. Tìm GTNN, GTLN của biểu thức:
a) 2x^2 + 4x - 8
b) - x^2 - 8x +1
help me, please
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
2. a. \(2x^2+4x-8=2\left(x+1\right)^2-10\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+1\right)^2-10\ge-10\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy GTNN của bt trên = - 10 <=> x = - 1
b. \(-x^2-8x+1=-\left(x+4\right)^2+17\)
Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+17\le17\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy GTLN của bt trên = 17 <=> x = - 4
Tìm GTNN:
B= 3x2-6x+1
Tìm GTLN:
a, A= -5x2-4x+13
b,B= -x2+10x-8
\(B=3x^2-6x+1=3x^2-6x+3-2=3\times\left(x^2-2x+1\right)-2=3\times\left(x-1\right)^2-2\)
\(3\times\left(x-1\right)^2\ge0\Rightarrow3\times\left(x-1\right)^2-2\ge-2\)
\(MinB=-2\Leftrightarrow x=1\)
\(A=-5x^2-4x+13=-5\times\left(x^2+\frac{4}{5}x-\frac{13}{5}\right)=-5\times\left(x^2+2\times x\times\frac{2}{5}+\frac{4}{25}-\frac{4}{25}-\frac{13}{5}\right)=-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\)
\(\left(x+\frac{2}{5}\right)^2\ge0\Rightarrow\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\ge-\frac{69}{25}\Rightarrow-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\le\frac{69}{5}\)
\(M\text{ax}A=\frac{69}{5}\Leftrightarrow x=-\frac{2}{5}\)
\(B=-x^2-10x+8=-x^2-10x-25+33=33-\left(x+5\right)^2\)
\(\left(x+5\right)^2\ge0\Rightarrow33-\left(x+5\right)^2\le33\)
\(M\text{ax}B=33\Leftrightarrow x=-5\)
Tìm GTNN của biểu thức:
A=x\(^2\)-2x-6 E=x\(^2\)-3x
B=4x\(^2\)4x+7 F=4x\(^2\)-+5x
C=9x\(^2\)-6x G=3x\(^2\)-2\(\sqrt{3}\)x
D=x\(^2\)+12x. H=5x\(^2\)-4\(\sqrt{5}\)x+7
a) \(A=x^2-2x-6\)
\(A=\left(x^2-2x+1\right)-7\)
\(A=\left(x-1\right)^2-7\)
Mà \(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1
a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)
Dấu '=' xảy ra khi x=1
b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)
Dấu '=' xảy ra khi x=1/2
c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=1/3
d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)
Dấu '=' xảy ra khi x=-6
e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)
Dấu '=' xảy ra khi x=3/2
1. Tìm GTNN của biểu thức :
A = 4x2 - 4x + 5 ; B = 3x2 + 6x - 1
2. Tìm GTLN của biểu thức :
A = 10 + 6x - x2 ; B = 7 - 5x - 2x2
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
Tính GTNN của bt
a/\(9x^2-7x+5\)
b/\(4x^2-5x\)
c/\(3x^2-6x\)
d/\(5x^2-15x\)
e/\(x^2+3x+4\)
f/\(2x^2-4x+7\)
g/\(2x^2-3x\)
h/\(3x^2-4x\)
Tìm min
F=3x^2 +x -2
G= 4x^2+2x-1
H=5x^2-x+1
Tìm max
A= -x^2 -6x+3
B=-x^2+8x-1
C= -x^2-3X+4
D= -2x^2+3x-1
E= -3x^2 – x +2
F= -5x^2 -4x +3
G= -3x^2 – 5x+1
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm min
$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$
$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$
$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$
$\Leftrightarrow x=\frac{1}{10}$