Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết
Yeutoanhoc
25 tháng 6 2021 lúc 15:32

`A=x^2-2x+5`

`=x^2-2x+1+4`

`=(x-1)^2+4>=4`

Dấu "=" `<=>x=1`

`B=4x^2+4x+3`

`=4x^2+4x+1+2`

`=(2x+1)^2+2>=2`

Dấu "=" xảy ra khi `x=-1/2`

`C=9x^2-6x+7`

`=9x^2-6x+1+6`

`=(3x-1)^2+6>=6`

Dấu '=' xảy ra khi `x=1/3`

`D=5x^2+3x+8`

`=5(x^2+3/5x)+8`

`=5(x^2+3/5x+9/100-9/100)+8`

`=5(x+3/10)^2+151/20>=151/20`

Dấu "=" xảy ra khi `x=-3/10`

An Thy
25 tháng 6 2021 lúc 15:36

\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)

\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)

Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)

\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)

Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)

\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)

Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)

\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
25 tháng 6 2021 lúc 15:34

- A = (x-1)2 + 4 \(\ge4\)

Dấu "=" <=> x = 1

- B = (2x+1)2 +2 \(\ge2\)

Dấu "=" xảy ra <=> x = \(\dfrac{-1}{2}\)

- C = (3x - 1)2 + 6 \(\ge6\)

Dấu "=" <=> x = \(\dfrac{1}{3}\)

- D = \(5\left(x^2+\dfrac{3}{5}x+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)

Dấu "=" <=> x = \(\dfrac{-3}{10}\)

abcdd
Xem chi tiết
T.Thùy Ninh
23 tháng 7 2017 lúc 15:27

a, \(A=9x^2-6x+5\)

\(=\left(9x^2-6x+1\right)+4\)

\(=\left(3x-1\right)^2+4\)

ta có:

\(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\forall x\)

Vậy Min A = 4

Để A = 4 thì \(3x-1=0\Rightarrow x=\dfrac{1}{3}\)

\(b,B=4x^2-5x\)

\(=\left(4x^2-5x+\dfrac{25}{16}\right)-\dfrac{25}{16}\)

\(=\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\)

TA có:

\(\left(2x-\dfrac{5}{4}\right)^2\ge\forall x\Rightarrow\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\ge-\dfrac{25}{16}\forall x\)Vậy Min B = \(-\dfrac{25}{16}\)

Để B = \(-\dfrac{25}{16}\) thì \(2x-\dfrac{5}{4}=0\Rightarrow2x=\dfrac{5}{4}\Rightarrow x=\dfrac{5}{8}\)

\(c,C=3x^2-6x\)

\(=3\left(x^2-2x+1\right)-3\)

\(=3\left(x-1\right)^2-3\)

Ta có:

\(3\left(x-1\right)^2\ge0\forall x\Rightarrow3\left(x-1\right)^2-3\ge-3\)

vậy Min C = -3

Để C = -3 thì x-1=0 => x = 1

\(d,D=5x^2-15x\)

\(=5\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{45}{4}\)

\(=5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\)

Ta có:

\(5\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)Vậy Min D = \(-\dfrac{45}{4}\)

Để \(D=-\dfrac{45}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

\(e,E=x^2+3x+4\)

\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

Vậy Min E = \(\dfrac{7}{4}\) khi \(x+\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

\(f,F=2x^2-4x+7\)

\(=2\left(x^2-2x+1\right)+5\)

\(=2\left(x-1\right)^2+5\ge5\forall x\)

Vậy Min F = 5 khi x - 1 =0 => x = 1

\(g,2x^2-3x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{8}\)

\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\forall x\)

Vậy Min G = \(\dfrac{-9}{8}\) khi \(x-\dfrac{3}{4}=0\Rightarrow x=\dfrac{3}{4}\)

\(h,H=3x^2-4x=3\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}\)

\(=3\left(x-\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)

Vậy Min H = \(-\dfrac{4}{3}\) khi \(x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)

trieu mac
Xem chi tiết
Nguyễn Hồ Bảo Trâm
Xem chi tiết
Nguyễn Hồ Bảo Trâm
25 tháng 8 2020 lúc 13:20

help me, please

Khách vãng lai đã xóa
Khánh Ngọc
25 tháng 8 2020 lúc 13:39

1. a . 3x2 - 6x = 0

\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b. x3 - 13x = 0

\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)

c. 5x ( x - 2001 ) - x + 2001 = 0

<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0

\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)

Khách vãng lai đã xóa
Khánh Ngọc
25 tháng 8 2020 lúc 13:43

2. a. \(2x^2+4x-8=2\left(x+1\right)^2-10\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+1\right)^2-10\ge-10\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTNN của bt trên = - 10 <=> x = - 1

b. \(-x^2-8x+1=-\left(x+4\right)^2+17\)

Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy GTLN của bt trên = 17 <=> x = - 4

Khách vãng lai đã xóa
Me Mo Mi
Xem chi tiết
Phương An
21 tháng 9 2016 lúc 11:19

\(B=3x^2-6x+1=3x^2-6x+3-2=3\times\left(x^2-2x+1\right)-2=3\times\left(x-1\right)^2-2\)

\(3\times\left(x-1\right)^2\ge0\Rightarrow3\times\left(x-1\right)^2-2\ge-2\)

\(MinB=-2\Leftrightarrow x=1\)

\(A=-5x^2-4x+13=-5\times\left(x^2+\frac{4}{5}x-\frac{13}{5}\right)=-5\times\left(x^2+2\times x\times\frac{2}{5}+\frac{4}{25}-\frac{4}{25}-\frac{13}{5}\right)=-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\)

\(\left(x+\frac{2}{5}\right)^2\ge0\Rightarrow\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\ge-\frac{69}{25}\Rightarrow-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\le\frac{69}{5}\)

\(M\text{ax}A=\frac{69}{5}\Leftrightarrow x=-\frac{2}{5}\)

\(B=-x^2-10x+8=-x^2-10x-25+33=33-\left(x+5\right)^2\)

\(\left(x+5\right)^2\ge0\Rightarrow33-\left(x+5\right)^2\le33\)

\(M\text{ax}B=33\Leftrightarrow x=-5\)

Trần Quý
Xem chi tiết
Vương Thiên Nhi
27 tháng 7 2018 lúc 18:08

a) \(A=x^2-2x-6\)

\(A=\left(x^2-2x+1\right)-7\)

\(A=\left(x-1\right)^2-7\)

\(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1

Nguyễn Lê Phước Thịnh
4 tháng 8 2022 lúc 14:08

a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)

Dấu '=' xảy ra khi x=1

b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)

Dấu '=' xảy ra khi x=1/2

c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)

Dấu '=' xảy ra khi x=1/3

d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)

Dấu '=' xảy ra khi x=-6

e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)

Dấu '=' xảy ra khi x=3/2

Thiên Ân
Xem chi tiết
ST
12 tháng 7 2018 lúc 18:44

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

abcdd
Xem chi tiết
T.Thùy Ninh
23 tháng 7 2017 lúc 16:29

Cái này mình giúp rồi nha<3

Vĩ Vĩ
Xem chi tiết
Akai Haruma
12 tháng 8 2023 lúc 23:52

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

Akai Haruma
12 tháng 8 2023 lúc 23:54

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

Akai Haruma
12 tháng 8 2023 lúc 23:55

Tìm min

$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$

$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$

$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$

$\Leftrightarrow x=\frac{1}{10}$