chứng minh với mọi số hữu tỉ x,y ta luôn có [x] + [y] \(\le\)[x+y] ( [x] lak phần nguyên )
Chứng minh rằng với mọi số thực dương x, y ta có: \(x\sqrt{y}+y\sqrt{x}\le x\sqrt{x}+y\sqrt{y}\)
Có:
\(x\sqrt{x}+y\sqrt{y}-x\sqrt{y}-y\sqrt{x}\ge0\)
\(x\left(\sqrt{x}-\sqrt{y}\right)-y\left(\sqrt{x}-\sqrt{y}\right)\ge0\)
\(\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)\ge0\)
\(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\ge0\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)\ge0\) (luôn đúng)
Dấu = xảy ra khi x=y
chứng minh rằng với mọi x,y \(\in\)Q ta luôn có: |x+y|\(\le\)|x|+|y|
chứng minh rằng với mọi x,y ∈Q ta luôn có: |x+y|≤|x|+|y|
Chứng minh rằng với mọi số thực x,y ta luôn có (x+y)2
≥ 4xy
\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(x=y\)
ta co
vt (x+y)2=x2+y2+2xy
=x2-2xy+y2+4xy≥ 4xy (dpcm)
Chứng minh rằng với mọi x,y là số thực ta luôn có: \(x^2+y^2+xy+1\ge \sqrt3(x+y)\)Cảm ơn mọi người.
chứng minh rằng với mọi x;y ta luôn có : (1+x2)(1+y2)+4xy+2(x+y)(1+xy) là số chính phương
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y+1+xy\right)^2\) là SCP
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)
= 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)
=(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)
=(x+y)2+(xy+1)2+2(x+y)(1+xy)
=(x+y+xy+1)2
cho hai số hữu tỉ x và y với x<y. chúng tỏ rằng ta luôn tìm được số hữu tỉ z sao cho x < z < y
Lấy z là trung bình cộng của x và y:
z = (x + y)/2
z là số hữu tỉ vì nó có thể biểu diễn được thành phân số có tử số và mẫu số là số nguyên. Dễ dạng chứng minh được:
x < (x + y)/2 < y
Mọi người giúp mình với. Chứng minh rằng với mọi x,y là số thức ta luôn có: \({x^2} + {y^2} + xy + 1 \ge \sqrt 3 (x + y)\) Tks all ^^
Bài 1: CMR với mọi số thực x, y ta luôn có: (Chỉ rõ dấu "=" xảy ra khi nào)
a) |x + y| \(\le\)|x| + |y|
b) |x| - |y| \(\le\)|x - y|
a) Ta có : \(|x+y|\le|x|+|y|\)
\(\Leftrightarrow\left(x+y\right)^2\le\left(|x|+|y|\right)^2\)
\(\Leftrightarrow x^2+2.x.y+y^2\le x^2+2.|x|.|y|+y^2\)
\(\Leftrightarrow xy\le|x||y|\)
Do bất đẳng thức cuối đúng nên bất đẳng thức đầu đúng.
Dấu bằng xảy ra khi \(xy=|x||y|\Rightarrow xy\ge0\)
b) Từ câu (a) ta có: \(|x-y|+|y|\ge|x-y+y|=|x|\)
\(\Rightarrow|x-y|\ge|x|-|y|\)
Dấu bằng xảy ra khi A-B và B cùng dấu.
Chứng minh rằng với mọi x, y ta luôn có:
( x 4 - x 3 y + x 2 y 2 - xy 3 + y 4 ) ( x + y ) = x 5 + y 5 .
Thực hiện phép nhân đa thức với đa thức ở vế trái
=> VT = VP (đpcm)