Rút gọn: (x+1)^4-6(x+1)^2-(x^2-2)(x^2+2)
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
P=(x^2-1/x^4-x^2+1 + 2/x^6+1 - 1/x^2+1).(x^2 - x^4+x^2-1/x^4+x^2+1 )
a,Rút gọn b,Tìm GTLN
Bạn vào biểu tượng \(\Sigma\) để nhập biểu thức cho chính xác nhé
Rút gọn: (x+2)/(x^2-4x+4) : ((6-x^2/x^2-2x) - (1/2-x) +(x+2/x))
\(=\dfrac{x+2}{\left(x-2\right)^2}:\left(\dfrac{6-x^2+x+x^2-4}{x\left(x-2\right)}\right)\)
\(=\dfrac{x+2}{\left(x-2\right)^2}\cdot\dfrac{x\left(x-2\right)}{x+2}=\dfrac{x}{x-2}\)
Rút gọn A = 1/(x+1)(x+2)+1/(x+2)(x+3)+2/(x+3)(x+4)+4/(x+4)(x+5)+8/(x+5)(x+6)
\(P=\left(\dfrac{x^2-1}{x^4-x^2+1}+\dfrac{2}{x^6+1}-\dfrac{1}{x^2+1}\right).\left(x^2-\dfrac{x^4+x^2-1}{x^4+x^2+1}\right)\)
a,Rút gọn b,Tìm GTLN
a) Ta có: \(P=\left(\dfrac{x^2-1}{x^4-x^2+1}+\dfrac{2}{x^6+1}-\dfrac{1}{x^2+1}\right)\cdot\left(x^2-\dfrac{x^4+x^2-1}{x^4+x^2+1}\right)\)
\(=\left(\dfrac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\dfrac{2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}-\dfrac{x^4-x^2+1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\right)\cdot\left(\dfrac{x^2\left(x^4+x^2+1\right)}{x^4+x^2+1}-\dfrac{x^4+x^2-1}{x^4+x^2+1}\right)\)
\(=\dfrac{x^4-1+2-x^4+x^2-1}{\left(x^2+1\right)\cdot\left(x^4-x^2+1\right)}\cdot\dfrac{x^6+x^4+x^2-x^4-x^2+1}{x^4+x^2+1}\)
\(=\dfrac{x^2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\cdot\dfrac{x^6+1}{x^4+x^2+1}\)
\(=\dfrac{x^2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\cdot\dfrac{\left(x^2+1\right)\left(x^4-x^2+1\right)}{x^4+x^2+1}\)
\(=\dfrac{x^2}{x^4+x^2+1}\)
rút gọn
A=[3/2 -(x2+2)/(x2+1)*(x+1)*(x-4)/x6-1)*(x+6)]/(x+3)*(x+26)/3*(x+6)*(x-2)
*Rút gọn :
a;(x-1)^2-(x+3)^2+(x+4)(x-4)
b;2(3x-2)^2-3(2x+5)^2-6(x+1)(x-1)
a) \(\left(x-1\right)^2-\left(x+3\right)^2+\left(x+4\right)\left(x-4\right)\)
\(=x^2-2x+1-\left(x^2+6x+9\right)+x^2-16\)
\(=x^2-2x+1-x^2-6x-9+x^2-16=-8x-24\)
b)
\(2\left(3x-2\right)^2-3\left(2x+5\right)^2-6\left(x+1\right)\left(x-1\right)\)
\(=2\left(9x^2-12x+4\right)-3\left(4x^2+20x+25\right)-6\left(x^2-1\right)\)
\(=18x^2-24x+8-12x^2-60x-75-6x^2+6=-84x-61\)
rút gọn biểu thức:
A=(x +2)(x-4)+(x+1)(x-6)
B=(2a - b)(4a^2 + 2ab + b^2)
C=(2 + x)(2 - x)(x + 4)
a: Ta có: \(A=\left(x+2\right)\left(x-4\right)+\left(x+1\right)\left(x-6\right)\)
\(=x^2-4x+2x-8+x^2-6x+x-6\)
\(=2x^2-7x-14\)
b: \(B=\left(2a-b\right)\left(4a^2+2ab+b^2\right)=8a^3-b^3\)
c: \(C=\left(2+x\right)\left(2-x\right)\left(x+4\right)\)
\(=\left(4-x^2\right)\left(x+4\right)\)
\(=4x+16-x^3-4x^2\)
rút gọn phân thức :
a) x^2+2x+1/x^2+x
b) -x^2+5x+6/x^2+4x+4
\(a,=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}=\dfrac{x+1}{x}\\ b,=\dfrac{-\left(x^2-5x-6\right)}{\left(x+2\right)^2}=\dfrac{-\left(x+1\right)\left(x-6\right)}{\left(x+2\right)^2}\)