CMR: Nêu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\) và x = y +z thì \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Cho x, y, z \(\ne\)0, \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)và x = y + z. CMR: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\).
\(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{2}{yz}-\frac{2}{xz}=1\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2}{xy}-\frac{2}{yz}+\frac{2}{xz}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2z-2x+2y}{xyz}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2z-2\left(y+z\right)+2y}{xyz}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+0=1\)
bài 1) CMR
a) (x+y)(y+z)(z+x)=0 (x;y;z#0)
thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
b) cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1và\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
chứng minh \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Ta có:
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{xyz}{abc}\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)
cho x;y;z là các số thực dương thỏa mãn x+y+z=1.CMR:
\(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{zx}{z^2+x^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{15}{4}\)
vì x+y+z=1nên
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)
nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)
\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)
dau = xay ra khi x=y=z=1/3
Cho x,y,z thỏa mãn 0<x,y,z<hoặc = 1 và x+y+z=2 CMR \(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge\frac{1}{2}\)
\(Cho\frac{1}{z}=\frac{1}{2}.\left(\frac{1}{x}+\frac{1}{y}\right)CMR\frac{x}{y}=\frac{x-z}{z-y}\left(x,y,z\right)khác0\)
cho x , y , z > 0 thỏa mãn xy + yz + zx = 3xyz
CMR: \(A=\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)
Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)
Ta cần c/m: \(A\ge\frac{3}{2}\)
Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)
Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)
\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)
\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)
\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)
Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)
Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:
\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)
Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ giùm
Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc Bunhia nên phải tách nó ra
Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)
\(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)
\(=x-\frac{\sqrt{z}}{2}\)
\(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))
Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)
\(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)
Cộng từng vế của các bđt trên lại được
\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)
\(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)
Từ điều kiện \(xy+yz+zx=3xyz\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow x+y+z\ge3\)
Quay trở lại với A
\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy .............
tth làm lạ vậy ? Lí giải hộ chỗ \(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}????\)
Cho x, y, z \(\ne0\)t/m x + y + z = 0
CMR: \(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}|\)
Ta co:\(x+y+z=0\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}|\)
\(x+y+z=0\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)(Vì \(x,y,z\ne0\))
\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=0\)
\(\Leftrightarrow2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)=0\)
Mà \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)\)
nên \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)(Áp dụng HĐT \(\sqrt{x^2}=\left|x\right|\))
CMR nếu \(\frac{1}{x}\)-\(\frac{1}{y}\)-\(\frac{1}{z}\)= 1 và x= y+z
thì \(\frac{1}{x^2}\)+\(\frac{1}{y^2}\)+\(\frac{1}{z^2}\)=1
\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.\left(-\frac{1}{xy}-\frac{1}{xz}+\frac{1}{yz}\right)=1\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.\frac{x-y-z}{xyz}=1\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
cho x, y, z > -1. Cmr: \(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\ge2\)
\(P=\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\ge\frac{1+x^2}{1+\frac{y^2+1}{2}+z^2}+\frac{1+y^2}{1+\frac{z^2+1}{2}+x^2}+\frac{1+z^2}{1+\frac{x^2+1}{2}+y^2}\)
\(P\ge\frac{2\left(1+x^2\right)}{3+y^2+2z^2}+\frac{2\left(1+y^2\right)}{3+z^2+2x^2}+\frac{2\left(1+z^2\right)}{3+x^2+2y^2}\)
Đặt \(\left\{{}\begin{matrix}3+y^2+2z^2=a\\3+z^2+2x^2=b\\3+x^2+2y^2=c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1+x^2=\frac{c+4b-2a}{9}\\1+y^2=\frac{a+4c-2b}{9}\\1+z^2=\frac{b+4a-2c}{9}\end{matrix}\right.\) với \(a;b;c\ge3\)
\(\Rightarrow P\ge\frac{2\left(c+4b-2a\right)}{9a}+\frac{2\left(a+4c-2b\right)}{9b}+\frac{2\left(b+4a-2c\right)}{9c}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{c}{a}+\frac{a}{b}+\frac{b}{c}\right)+\frac{8}{9}\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)-\frac{4}{3}\)
\(\Rightarrow P\ge\frac{2}{9}.3+\frac{8}{9}.3-\frac{4}{3}=2\)
Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z=1\)