cho tam giác abc cân tại a.trung tuyến am.kẻ mk vuông góc ab tại k. từ a kẻ đường thẳng vuông góc ck cắt mk ở i. chứng minh im=ik
cho tam giác ABC cân tại A trung tuyến AM.Kẻ MK vuông góc với AB tại K từ A kẻ dt vuông góc với CK cắt MK ở I .CMR IM=IK
Bài 1:
Cho tam giác ABC cân tại A, từ B kẻ đường thẳng x vuông góc với AB, từ C kẻ đường thẳng y vuông góc với AC, x cắt y tại M.
Chứng minh: AM là tia phân giác của góc BAC.
Bài 2:
Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt đường trung trực BC tại I. Kẻ IH vuông góc với AB; IK vuông góc với AC.
Chứng minh: BH = CK.
Bài 3:
Cho tam giác ABC cân tại A, các đường trung trực của AB và AC cắt nhau tại I.
Chứng minh: AI là tia phân giác của góc BAC.
Bài 1:
Cho tam giác ABC cân tại A, từ B kẻ đường thẳng x vuông góc với AB, từ C kẻ đường thẳng y vuông góc với AC, x cắt y tại M.
Chứng minh: AM là tia phân giác của góc BAC.
Bài 2:
Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt đường trung trực BC tại I. Kẻ IH vuông góc với AB; IK vuông góc với AC.
Chứng minh: BH = CK.
Bài 3:
Cho tam giác ABC cân tại A, các đường trung trực của AB và AC cắt nhau tại I.
Chứng minh: AI là tia phân giác của góc BAC.
Cho tam giác ABC cân tại A ,kẻ BH vuông góc AC,CK vuông góc AB (H thuộc AC ,k thuộc AB). chứng minh tam giác ABH =Tam giác ACK . Gọi I là giao của BH vaf Ck ,AI cắt BC tại M .chứng minh IM là phân giác
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
=>ΔABH=ΔACK
b: góc KBC+góc ICB=90 độ
góc IBC+góc HCB=90 độ
mà góc KBC=góc HCB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
Cho tam giác ABC cân tại A, kẻ AM vuông góc BC(M thuộc BC) a) Chứng munh tam giác ABM=tam giác ACM b) Kẻ MI Vuông góc AB(I€AB); MK vuông góc AC(K € AC). Chứng minh MI=MK c) Chứng minh AM vuông góc IK €:thuộc
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
=>ΔABM=ΔACM
b: Xét ΔAIM vuông tạiI và ΔAKM vuông tại K có
AM chung
góc IAM=góc KAM
=>ΔAIM=ΔAKM
=>AI=AI và MI=MK
c:AI=AK
MI=MK
=>AM là trung trực của IK=>AM vuông góc IK
Cho tam giác ABC cân tại A .Kẻ BH vuông góc với AC; CK vuông góc với AB (H thuộc AC; K thuộc AB) a)Chứng minh tam giác AKH là tam giác cân b)Gọi I là giao của BH và CK;AI cắt BC tại M.Chứng minh rằng IM là phân giác của góc BIC c)Chứng minh :HK // BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
cho tam giác abc vuông tại a cho ab=20cm bc=25cm a, tính ac b,trên tia đối của tia ab lấy k sao cho ba =ak chứng minh tam giác bck cân c, kẻ đường thẳng d vuông góc với ac tại c i là trung điểm của ck bi cắt d tại m chứng minh bi=im
Cho tam giác ABC cân tại A,trung tuyến AM.Kẻ đường thẳng d đi qua A sao cho B và C thuộc nửa mặt phẳng bờ d.Kẻ BH và CK vuông góc với d(H và K thuộc d)
a/Chứng minh AH =CK
b/Chứng minh tam giác MHK vuông cân
c/Gọi P là giao điểm của AB và MH, Q là giao điểm của AC và MK. Chứng minh PQ // d
cho tam giác abc cân tại a. góc a < 90 độ. kẻ bh vuông góc với ac tại h, ck vuông góc với ab tại k. o là giao điểm của bh và ck. qua b,c kẻ các đường thẳng vuông góc với ab, ac. chúng cắt nhau tại i. chứng minh a,o,i thẳng hàng