Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vương kiều linh
Xem chi tiết
Trần Thị Kim Ngân
Xem chi tiết
Nguyễn Thị Thương Hoài
16 tháng 12 2023 lúc 19:09

d ở đâu ra vậy em?

nguyễn lê gia linh
Xem chi tiết
Thanh Thảo Lê
22 tháng 11 2017 lúc 22:43

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

Đàm Thị Thu Trang
7 tháng 11 2021 lúc 8:53

khó quá

mình cũng đang hỏi câu đấy đây

 

Nguyễn Đăng Vinh
Xem chi tiết
Rin Huỳnh
7 tháng 1 2022 lúc 21:07

b) f(1) + 2f(-2) = a - 1 + 2(a - 1).(-2) = a - 1 - 4a + 4 = -3a + 3 = -3(a - 1) = f(-3) (đpcm)

Trần Thị Kim Ngân
Xem chi tiết
Nguyễn Minh Tùng
15 tháng 12 2023 lúc 21:24

(x+15)⋮(x+6)

Đỗ Nhật Minh
15 tháng 12 2023 lúc 21:27

Cho đề bài chi tiết đi bạn

 

 

Minz Ank
Xem chi tiết
Hquynh
29 tháng 3 2021 lúc 21:06

https://hoc247.net/hoi-dap/toan-6/chung-minh-a-1-1-2-1-3-1-100-khong-phai-so-tu-nhien-faq442360.html

Em tk trang đó nha

Đỗ Thanh Hải
29 tháng 3 2021 lúc 21:11

Ta có 

\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)

=> A > 1 do \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\ne0\)

\(\dfrac{1}{2}>\dfrac{1}{100}\)

\(\dfrac{1}{3}>\dfrac{1}{100}\)

................

\(\dfrac{1}{100}=\dfrac{1}{100}\)

=> \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}>\dfrac{1}{100}.99\) (do dãy có 99 số) = \(\dfrac{99}{100}\)

=> A < \(1+\dfrac{99}{100}< 1+\dfrac{100}{100}=1+1=2\)

=> 1 < A < 2

Vậy A không phải số tự nhiên

 

cô nàng cự giải
Xem chi tiết
thanchet
9 tháng 4 2017 lúc 20:55

áp dụng BDT cô si với 2 số dương ta có  a/b+b/a>=2

==> a/b+ 1 +b/a +1 >=4

==> (a+b)/a+(a+b)/b>=4

==>(a+b)(1/a+1/b)>=4

dấu "=" xảy ra khi a=b

Nguyễn Thị Tuyến
Xem chi tiết
Lightning Farron
14 tháng 12 2016 lúc 19:09

Bài 2:

Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :

Bình phương 2 vế của (*) ta có:

\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)

\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)

Áp dụng (*) vào bài toán ta có:

\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)

Unknow
Xem chi tiết
Lê Song Phương
9 tháng 8 2023 lúc 22:02

Ta đặt \(a^2+4b+3=k^2\) 

\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)

Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)

Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)

\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)

\(\Leftrightarrow c^2+c+1+b=l^2\)

Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.

Nếu \(c< b< 2c+1\) thì

\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.

Do vậy, \(c=b\) hay \(a=2b+1\)

Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.