Giả sử cả 2 số a,b đều \(\ge1\)
Khi đó: a+b \(\ge2\)(!)(gt)
Vậy ta có 1 trong 2 số a,b <1(đpcm).
#Walker
Giả sử cả 2 số a,b đều \(\ge1\)
Khi đó: a+b \(\ge2\)(!)(gt)
Vậy ta có 1 trong 2 số a,b <1(đpcm).
#Walker
Chứng minh bằng phản chứng:
1) Nếu m^2 + n^2 chia hết cho 3 thì m, n chia hết cho 3
2) Có vô số số nguyên tố dạng 4k+3
Mọi người giúp mình với, thứ 7 mình thi rồi!
Cho A = [2 ; 4) ; B = ( - \(\infty\) ; m ]
a) Tìm m để A \(\cap\) B = \(\varnothing\)
b) Tìm m để A \(\cap\) B \(\ne\) \(\varnothing\)
c) Tìm m để A \(\subset\) B
*Cần gấp làm ơn giúp mình với*
Giúp với mình cần gấp
1.Cho A= {x€ R/|x| ≤ 4}; B={x€ R/ -5<x -1 ≤ 8}. Viết các tập hợp sau dưới dạng đoạn – khoảng- nữa khoảng R\(A ∪ B), A ∩ B, A\B, B\A
2.Cho A= {x€ R/x^2 ≤ 4}; B={x€ R/ -2<x -1< 3}. Viết các tập hợp sau dưới dạng đoạn – khoảng- nữa khoảng R\(A ∪ B), A ∩ B, A\B, B\A
3. Gọi N(A) là số phân tử của A. Cho N(A)=25, N(B)= 29,N(A∪B)=41. Tính N (A ∩ B),N (A\B),N (B\A)
Cho A a,b,c dương thỏa mãn abc=1.Chứng minh rằng nếu a+b+c>1/a+1/b+1/c thì có 1 và chr 1 trong ba số a,b,c lớn hơn 1
Chứng minh rằng với mọi số tự nnieen n
a, \(9^{2n+1}+1\) chia hết cho 10
b, \(3^{4n+1}+2\) chia hết cho 5
Chứng minh theo quy nạp
Dãy số Fn=2^2^n +1 với n thuộc N gọi là các số Fermat
a) Chứng minh Fn=F0F1....Fn-1 +2 với mọi n nguyên dương
b) Từ đó chứng minh (Fm,Fn)=1 với mọi m khác n nguyên dương
Chứng minh:
a. Nếu a+b<2 thì một trong 2 số a và b phải nhỏ hơn 1
b. Nếu x khác -1 và y khác -1 thì x+y+xy khác -1
1. Cho A = { 2 + 3k | k \(\in\) Z } , B = { 2 + 6k | k \(\in\) Z } , C = { -1 + 3k | k \(\in\) Z }
a . chứng minh rằng 2 \(\in\) A , - 7 \(\in\) C . số 16 có thuộc tập hợp A không ?
b.Chứng minh rằng B \(\subset\) A , A = C
Sử dụng phương pháp chứng minh
phản chứng để chứng minh các bài toán sau:
a) Chứng minh rằng có ít nhất một trong 3
phương trình :ax2 + bx + c = 0, bx2 + cx +
a = 0, cx2 + ax + b = 0 vô nghiệm.
b) Cho 0 < a, b, c < 1. Chứng minh có ít
nhất 1 trong các bất đẳng thức sau sai:
a(1 − b) >\(\frac{1}{4}\)
, b(1 − c) >\(\frac{1}{4}\)
, c(1 − a) >\(\frac{1}{4}\)
.
c) Cho các số thực x, y, z thỏa x.y.z > 0, x +
y + z > 0, xy + xz + yz > 0. Chứng minh
x, y, z là các số dương.