Không dùng máy tính , tính: P = \(\frac{2006}{2007}+\sqrt{1+2006^2+\frac{2006^2}{2007^2}}\)
Không dùng máy tính hãy so sánh : \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\) với 4
Vì 2006/2007 ; 2007/2008 ; 2008/2009 ; 2009/2010 đều bé hơn 1 nên:
2006/2007 + 2007/2008 + 2008/2009 + 2009/2010 < 1 + 1 + 1 + 1 = 4.
Vậy ...
A=\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)=3-(\(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\))+1+\(\frac{3}{2006}\)=4+(\(\frac{1}{2006}-\frac{1}{2007}\))+(\(\frac{1}{2006}-\frac{1}{2008}+\frac{1}{2009}\))
=> A>4 (\(\frac{1}{2006}>\frac{1}{2007}>\frac{1}{2008}>\frac{1}{2009}\))
a/Tính: A= \(\sqrt{1+2006^2+\frac{2006^2}{2007^2}}+\frac{2006}{2007}\)
b/Cho A=\(\sqrt{2015^2-1}-\sqrt{2014^2-1}\)và B=\(\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
So sánh A vs B
Tính :
\(\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2006}{2}+\frac{2006}{3}+...+\frac{1}{2006}}\)
Tính một cách hợp lí giá trị của các biểu thức sau:
A=3+6+9+12+...+2007
B=2.53.12+4.6.87-3.8.40
C=(\(\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2006}{2}+\frac{2006}{3}+...+\frac{1}{2006}}\)
A = 3 + 6 + 9 + ... + 2007
=>A = 3( 1 + 2 + 3 + ... + 669 )
=> A = \(3\cdot\left(\frac{670\cdot669}{2}\right)\)
=> A = \(3\cdot224115\)= 672345
B = \(2\cdot53\cdot12+4\cdot6\cdot87-3\cdot8\cdot40\)
=> B = 24 * 53 + 24 * 87 - 24 * 40
=> B = 24 * ( 53 + 87 - 40 )
=> B = 24 * 100 = 2400
c) ta có Tử số = \(2006\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)\)
Mẫu số = \(\frac{2007-1}{1}\)+\(\frac{2007-2}{2}\)+...+\(\frac{2007-2006}{2006}\)
=> Mẫu số = \(\frac{2007}{1}\)\(-1\)+ \(\frac{2007}{2}\)\(-1\)+ ... + \(\frac{2007}{2006}\)\(-1\)
=> Mẫu số = \(\frac{2007}{1}\)+ \(\frac{2007}{2}\)+ ... + \(\frac{2007}{2006}\)- ( 1 + 1 + 1 + ... + 1 ) ( 1 + 1 + ... + 1 có 2006 số hạng 1 )
=> Mẫu số = ( 2007 - 2006 ) + \(2007\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}\right)\)
=> Mẫu số = \(\frac{2007}{2007}\)+ \(2007\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}\right)\)
=> Mẫu số = \(2007\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)\)
=> C = \(\frac{TS}{MS}\)= \(\frac{2006}{2007}\)
tính hợp lí C=\(\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+...+\frac{1}{2006}}\)
\(C=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+....+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.....+\frac{1}{2006}}\)
Đặt N = \(\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.....+\frac{1}{2006}\)
\(\Rightarrow N=\frac{1}{2006}+.....+\frac{2004}{3}+\frac{2005}{2}+\frac{2006}{1}\)
\(\Rightarrow N=\left(\frac{1}{2006}+1\right)+.....+\left(\frac{2004}{3}+1\right)+\left(\frac{2005}{2}+1\right)+1\)( Có 2005 nhóm )
\(=\frac{2007}{2006}+....+\frac{2007}{3}+\frac{2007}{2}+\frac{2007}{2007}\)
\(=2007\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2006}+\frac{1}{2007}\right)\)
Đặt M = \(\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+....+\frac{2006}{2007}\)
\(=2006\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}\right)\)
Thay N và M vào C , ta có :
\(C=\frac{N}{M}=\frac{2006\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}\right)}{2007\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2007}\right)}=\frac{2006}{2007}\)
\(\Rightarrow C=\frac{2006}{2007}\)
Vậy : \(C=\frac{2006}{2007}\)
tính nhanh các phép tính:
a) \(A=\frac{2006^3+1}{2006^2-2005}\)
b) \(B=\frac{2006^3-1}{2006^2+2007}\)
(hướng dẫn: dùng hằng đẳng thức)
Thực hiện phép tính :
Q=\(\sqrt{1+2006^2+\dfrac{2006^2}{2007^2}}+\dfrac{2006}{2007}\)
Giúp mình với !
\(Q=\sqrt{1+2006^2+\left(\dfrac{2006}{2007}\right)^2}+\dfrac{2006}{2007}\)
=\(1+2006+\dfrac{2006}{2007}+\dfrac{2006}{2007}\)
=\(2007+\dfrac{4012}{2007}\)
=\(\dfrac{2007^2}{2007}+4012\)
=\(\dfrac{4028049}{2007}+\dfrac{4012}{2007}\)
=\(\dfrac{4032061}{2007}\)
\(Q=\sqrt{1+2006^2+\dfrac{2006^2}{2007^2}}+\dfrac{2006}{2007}\)
\(=1+2006+\dfrac{2006}{2007}+\dfrac{2006}{2007}\)
\(=\dfrac{4032061}{2007}\)
Tính :
\(\frac{1}{2007}.\left(\frac{1001}{2006}-2007\right)-\left(\frac{1}{2006}-2007\right).\frac{1001}{2007}\)
\(\frac{1}{2007}.\left(\frac{1001}{2006}-2007\right)-\left(\frac{1}{2006}-2007\right).\frac{1001}{2007}\)
\(=\left(\frac{1001}{2007.2006}-\frac{2007}{2007}\right)-\left(\frac{1001}{2006.2007}-\frac{2007.1001}{2007}\right)\)
\(=\frac{1001}{2007.2006}-\frac{1001}{2006.2007}-1+1001\)
\(=-1+1001\)
\(=1000\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
ừ, bạn bik làm thì giúp mình nha ^^