Tìm x, y thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
Tìm x; y thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
Tìm tất cả các cặp số (x; y) thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
\(pt\Leftrightarrow\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-4}}{x}=\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{4\left(y-4\right)}}{2y}\le\frac{4+y-4}{2\cdot2y}=\frac{1}{4}\)
Tương tự ta cũng có \(\frac{\sqrt{x-4}}{x}\le\frac{1}{4}\)
Cộng theo vế ta có Đpcm
Dấu "=" xảy ra khi x=y, thay vào giải ra ta dc x=y=8
Tìm x y thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
áp dụng BĐT co-sy ta có:
\(x\sqrt{\left(y-4\right)4}\le\frac{xy}{2}\)
tương tự ta có:
\(y\sqrt{\left(x-4\right)4}\le\frac{xy}{2}\)
cộng từng vế thì được \(VT\le VP\)
=> bằng khi x=y=8
Cho x,y là các số thực dương thỏa mãn đồng thời các điều kiên:
1) \(\left(x+2\right)\left(y+2\right)=3\left(x^2+y^2+\sqrt{xy}\right)\)
2) \(\left(\sqrt{x}+\sqrt{y}\right)^3=4\left(x^3+y^3\right)\)
CMR: \(\sqrt{x}+\sqrt{y}=2\)
cho các số dương x,y thỏa mãn\(\left(x\sqrt{x}+y\sqrt{y}\right)-3\left(x+y\right)+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)
tim ma cua M=\(\frac{2\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
pt đã cho <=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)-2\left(x+y\right)-\left(x+y+2\sqrt{xy}\right)+2\sqrt{xy}+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)
<=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)-2\left(x+y\right)+2\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}-2\right)^2=0\)
<=>\(\left(\sqrt{x}+\sqrt{y}-2\right)\left(x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2\right)=0\)
<=>\(\orbr{\begin{cases}\sqrt{x}+\sqrt{y}=2\\x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2=0\end{cases}}\)
th2: nhân cả hai vế với 2 ta được
\(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+2>0\)
=>th2 vô nghiệm
do đó M=\(\sqrt{xy}\)
áp dụng bdt cô si ta có \(\sqrt{x}+\sqrt{y}>=2\sqrt{\sqrt{xy}}\)
<=>1>=\(\sqrt{\sqrt{xy}}\)(do \(\sqrt{x}+\sqrt{y}=2\))
<=>\(\sqrt{xy}< =1\)
<=>M<=1
Tìm tất cả các cặp số (x,y) thỏa mãn điều kiện \(2\left(\sqrt{y-4}+y\sqrt{x-4}\right)+xy\)
cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm giá trị lớn nhất của biểu thức M = xy + 3y - 4\(x^2\) - 3
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
tim x,y thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
Cho các số x,y thỏa mãn: \(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=3\). Tính giá trị của biểu thức: \(A=4x^4+xy+y^2+15\)