Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thành An
Xem chi tiết
Dang Hoang Mai Han
Xem chi tiết
Yen Nhi
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Khách vãng lai đã xóa
Vân Nguyễn Thảo
Xem chi tiết
Ngọc Hoàng Khương Nguyễn
Xem chi tiết
Hồng Phúc
30 tháng 8 2021 lúc 2:10

Đặt \(a^2=n^2-n+2\left(a\in Z\right)\)

\(\Rightarrow4a^2=4n^2-4n+8\)

\(\Leftrightarrow4a^2=\left(2n-1\right)^2+9\)

\(\Leftrightarrow4a^2-\left(2n-1\right)^2=9\)

\(\Leftrightarrow\left(2a-2n+1\right)\left(2a+2n-1\right)=9\)

Phương trình ước số cơ bản.

.
Xem chi tiết

Ta có :

2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1

=> 2n chia hết cho 8 => n chia hết cho 4

=> n+2019 chia ch 4 dư 3

mà số chính phương chia cho 4 dư 0,1

=> không tồn tại n

Khách vãng lai đã xóa
IS
28 tháng 2 2020 lúc 13:02

2n + 2017 là số chính phương lẻ

=> 2n + 2017 chia 8 dư 1 ( do scp lẻ chia 8 dư 1)

=> 2n chia hết cho 8 => n chia hết cho 4

=> n + 2019 chia 4 dư 3

Mà scp chia 4 dư 0 hoặc 1

=> n + 2019 ko là scp

Vậy ko tồn tại STN n thoả mãn

Khách vãng lai đã xóa
Trí Tiên亗
28 tháng 2 2020 lúc 13:04

Đặt \(\hept{\begin{cases}2n+2017=a^2\\n+2019=b^2\end{cases}\left(a,b\inℕ^∗\right)}\)

Dễ thấy : \(a^2\) là số chính phương lẻ, mà số chính phương lẻ chia 8 luôn dư 1. ( Điều này sẽ được chứng minh ở cuối bài làm ).

\(\Rightarrow2n+2017\equiv1\left(mod8\right)\)

\(\Rightarrow2n⋮8\) \(\Rightarrow n⋮4\)

\(\Rightarrow n+2019:4\) dư 3 hay \(\Rightarrow b^2:4\) dư 3

Lại có : một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1. ( Điều này sẽ được chứng minh ở cuối bài làm )

\(\Rightarrow n+2019\) không phải là số chính phương.

Do đó không tồn tại số tự nhiên n thỏa mãn đề.

*) Chứng minh bài toán phụ :

+) Số chính phương lẻ chia 8 dư 1 :

Ta có : \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\) chia 8 dư 1. 

+)  Một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1. 

Ta có : \(\left(2k\right)^2=4k^2⋮4\) nên khi chia 4 có số dư là 0.

\(\left(2k+1\right)^2=4k\left(k+1\right)+1\) chia 4 dư 1.

Khách vãng lai đã xóa
Tsubasa( ɻɛɑm ʙáo cáo )
Xem chi tiết
Xyz OLM
11 tháng 6 2021 lúc 15:18

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

Khách vãng lai đã xóa
Trương Thanh Nhân
Xem chi tiết
lequanganh
Xem chi tiết
lequanganh
10 tháng 12 2018 lúc 21:25

ai nhanh tôi k cho

Phương Đông
26 tháng 2 2019 lúc 21:30

Tự túc là hạnh phúc! OK?

Phương Đông
26 tháng 3 2019 lúc 20:50

Tốt, k cho tao. Hế hế

Vũ Nguyễn Việt Anh
Xem chi tiết