Dùng phương pháp hệ số bất định để phân tích đa thức 2x4- 3x3- 7x2+ 6x+ 8 thành nhân tử
Dùng phương pháp hệ số bất định để phân tích đa thức thành nhân tử:
x4 - 8x + 63
\(x^4-8x+63=\left(x^2\right)^2+2.x^2.8+8^2-16x^2-8x-1\)
\(=\left(x^2+8\right)^2-\left(4x+1\right)^2\)
\(=\left(x^2+8-4x-1\right)\left(x^2+8+4x+1\right)=\left(x^2-4x+7\right)\left(x^2+4x+9\right)\)
Cách hệ số bất định đây nhé:
Giả sử: \(x^4-8x+63=\left(x^2+ax+7\right)\left(x^2+cx+9\right)\)
\(=x^4+cx^3+9x^2+ax^3+acx^2+9ax+7x^2+7cx+63\)
\(=x^4+\left(c+a\right)x^3+\left(9+ac+7\right)x^2+\left(9a+7c\right)+63\)
Đồng nhất hệ số,ta được:
c + a = 0 (1)
ac = - 16 (2)
9a + 7c = -8 (3)
Giải (1) được c=-a.Thay vào (2) được: \(ac=-a^2=c^2=16\)
Suy ra \(c=4\Rightarrow a=-4\) (ta thay vào (3) để loại c = -4 nên ở đây mình làm tắt)
Vậy: \(x^4-8x+63=\left(x^2-4x+7\right)\left(x^2+4x+9\right)\)
P/s: Ở đây là gặp may mắn vì đã chọn được 63 = 7 . 9 là đúng=) Còn chọn 63 = 1. 63 thì khó làm đấy=)
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định
x2-6x+5
Ta có : x2 - 6x + 5
= x2 - x - 5x + 5
= (x2 - x) - (5x - 5)
= x(x - 1) - 5(x - 1)
= (x - 5)(x - 1)
Tao có \(x^2-6x+5\)
=\(x^2-x-5x+5\)
=\(\left(x^2-x\right)-\left(5x-5\right)\)
=\(x\left(x-1\right)-5\left(x-1\right)\)
=\(\left(x-5\right)\left(x-1\right)\)
Phân tích đa thức x^8+7x^4+1 thành nhân tử bằng phương pháp hệ số bất định
ak
x8 + -7x4 + -8 = 0 Reorder the terms: -8 + -7x4 + x8 = 0 Solving -8 + -7x4 + x8 = 0 Solving for variable 'x'. Factor a trinomial. (-1 + -1x4)(8 + -1x4) = 0
bn vui lòng làm ra từng bước cho mk dc ko???
Phân tích đa thức thành nhân tử bằng phương pháp dùng hệ số bất định
a)3x^2-22xy-4x+8y+7y^2+1
a)3x^2-22xy-4x+8y+7y^2+1 = (y - 3x + 1) (7y - x + 1)
phân tích đa thức thành nhân tử ( dùng phương pháp hệ số bất định ) 2x^2 + 2y^2 + 5xy + x - y - 1
Phân tích đa thức thành nhân tử bằng phương pháp dùng hệ số bất định
a)3x^2-22xy-4x+8y+7y^2+1
Phân tích đa thức thành nhân tử bằng phương pháp dùng hệ số bất định với các hê số nguyên x mũ 4 - 5xmũ 3 + 7x mũ 2 - 6
Đặt H \(=x^4-5x^3+7x^2-6\)
Gỉa sử : \(H=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^{3\:}+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
\(\Leftrightarrow\hept{\begin{cases}a+c=-5\\ac+b+d=7\\ad+bc=0\end{cases}}\)
\(\left\{bd=6\right\}\)
\(\Leftrightarrow\hept{\begin{cases}a=-3\\b=3\\c=-2\end{cases}}\)
\(\left\{d=-2\right\}\)
\(\Rightarrow H=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)
Chúc bạn học tốt !!!
phân tích đa thức sau thành nhân tử bằng phương pháp hệ số bất định
x3 - 9x2 + 6x + 16
Giúp mình với mình cần gấp :(((
x3 - 9x2 + 6x + 16
= x3 - 8x2 -x2 + 8x - 2x + 16
= x2(x-8) -x(x-8) -2(x-8)
= (x-8)(x2-x-2)
= (x-8)(x2-2x + x - 2)
=(x-8)[x(x-2)+(x-2)]
=(x-8)(x-2)(x+1)
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định: 2x^3 - 5x^2 - 9x - 3