Chứng minh ! tất cả các số tự nhiên n (khác 0! 3^n + 2 x 2^n + 2 x 3^n x 2^n chia hết cho 10
a) Tìm tất cả các cặp số tự nhiên (x,y) sao cho: 4x+5y=35
b) Tìm tất cả các cặp số tự nhiên khác 0 (x,y) sao cho: (2x+5).(x+2)=3y
c) Tìm các số nguyên tố x,y thỏa mãn: 272x=11y+29
d) Chứng minh rằng với mọi số tự nhiên n thì: (10n+72n-1) chia hết cho 81
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
a,Chứng minh rằng với mọi số tự nhiên n khác 0 ta luôn có:
1²+2²+3²+...+n²=n.(n+1).(2n+1)/6
b,Chứng minh rằng
A=1.5+2.6+3.7+...+2023.2027
chia hết các số 11;23 và 2023
c,Tìm tất cả các số tự nhiên n (1 ≤ n ≤ 2000) để biểu thức B=1.3+2.3+...+n.(n+2) chia hết cho 2027
a:
\(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)
Đặt \(S=1^2+2^2+...+n^2\)
Với n=1 thì \(S_1=1^2=1=\dfrac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}\)
=>(1) đúng với n=1
Giả sử (1) đúng với n=k
=>\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\)
Ta sẽ cần chứng minh (1) đúng với n=k+1
Tức là \(S_{k+1}=\dfrac{\left(k+1+1\right)\cdot\left(k+1\right)\left(2\cdot\left(k+1\right)+1\right)}{6}\)
Khi n=k+1 thì \(S_{k+1}=1^2+2^2+...+k^2+\left(k+1\right)^2\)
\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\left(k+1\right)\left(\dfrac{k\left(2k+1\right)}{6}+k+1\right)\)
\(=\left(k+1\right)\cdot\dfrac{2k^2+k+6k+6}{6}\)
\(=\left(k+1\right)\cdot\dfrac{2k^2+3k+4k+6}{6}\)
\(=\dfrac{\left(k+1\right)\cdot\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}\)
\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left(k+1+1\right)\left[2\left(k+1\right)+1\right]}{6}\)
=>(1) đúng
=>ĐPCM
b: \(A=1\cdot5+2\cdot6+3\cdot7+...+2023\cdot2027\)
\(=1\left(1+4\right)+2\left(2+4\right)+3\left(3+4\right)+...+2023\left(2023+4\right)\)
\(=\left(1^2+2^2+3^2+...+2023^2\right)+4\left(1+2+2+...+2023\right)\)
\(=\dfrac{2023\cdot\left(2023+1\right)\left(2\cdot2023+1\right)}{6}+4\cdot\dfrac{2023\left(2023+1\right)}{2}\)
\(=\dfrac{2023\cdot2024\cdot4047}{6}+\dfrac{2023\cdot2024}{1}\)
\(=2023\left(\dfrac{2024\cdot4047}{6}+2024\right)⋮2023\)
\(A=\dfrac{2023\cdot2024\cdot4047}{6}+2023\cdot2024\)
\(=2024\left(2023\cdot\dfrac{4047}{6}+2023\right)\)
\(=23\cdot11\cdot8\cdot\left(2023\cdot\dfrac{4047}{6}+2023\right)\)
=>A chia hết cho 23 và 11
a,Chứng minh rằng với mọi số tự nhiên n khác 0 ta luôn có:
1²+2²+3²+...+n²=n.(n+1).(2n+1)/6
b,Chứng minh rằng
A=1.5+2.6+3.7+...+2023.2027
chia hết các số 11;23 và 2023
c,Tìm tất cả các số tự nhiên n (1 ≤ n ≤ 2000) để biểu thức B=1.3+2.3+...+n.(n+2) chia hết cho 2027
a) tìm số tự nhiên nhỏ nhất có sáu chữ số chia hết cho cả 2,3,5 và 9
b) chứng minh rằng : a) 10^6 + 5^7 chia hết cho 69 b) 14^6 - 49^3 chia hết cho 63
c) chứng tỏ rằng với mọi số tự nhiên n thì tích : ( n+6) . (n+3) là bội của 2
d) tìm các số tự nhiên x thỏa mãn :
1) 12 + 27 + x chia hết cho 3
2) 34 + x +10 không chia hết cho 2
3) ( 3.x + 10) chia hết cho 5
4) (2.x + 10) không chia hết cho 10
Mình cần gấp nha! Làm câu nào cũng được
Bài 1 : Tìm số tự nhiên hỏ nhất khác 0 biết a chia hết cho 40, 220, 24.
Bài 2 : Tìm x
a) (x-23) : 14+ 25 = 42-12002
b) 23.x +20020.x = 995 -15:3
c) x+2x +3x....+9x= 459-32
Bài 3:
a) Tính S = 4+ 7+ 10+ 13+ ............+2014
b) Chứng minh rằng n.(n+2013) chia hết cho 2 với mọi số tự nhiên n
Câu 6:
a) Cho a^n chia hết cho 5( với a,n ϵN*). Chứng tỏ rằng: a^2+2022 chia hết cho 5.
b) Tìm tất cả các dố tự nhiên x,y để: 4^x +2^3= 3^y
Bài 1 : Cho a thuộc N*. Chứng minh rằng ( 4^a +1 ) . (4^a +2) chia hết cho 3
Bài 2 : Tìm các số tự nhiên x , biết 4^x +11 = 6y
Bài 3: Cho biết a và 5a có tổng các chữ số bằng nhau . Chứng minh rằng a chia hết cho 9
Bài 4 : Tìm tất cả các số tự nhiên x , y sao cho x+1 chia hết cho y và y+1 chia hết cho x
Bài 1/ Tìm các số tự nhiên x , biết: (x+10)chia hết cho x+1
Bài 2/ Tìm tất cả các số tự nhiên n để n2 + 16n là một số nguyên tố