Chứng minh: a) 1/căn 1+1/căn 2+1/căn 3+…………+1/căn 100>18<19
Chứng minh: (1/ căn 1) + (1/ căn 2) + (1/ căn 3 ) + ... + (1/ căn 100) > 18
CMR:
1/căn 2 + 1/căn 3 + 1/căn 4 + ... + 1/căn 100 < 18
chứng minh rằng: 1/căn 1+1/ căn 2+........+1/ căn 100 >10
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}+\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}\right)+\left(\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{9}}\right)+...+\left(\frac{1}{\sqrt{82}}+...+\frac{1}{\sqrt{100}}\right)\)
\(>\frac{1}{\sqrt{1}}+\left(\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}\right)+\left(\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{9}}\right)+...+\left(\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\right)\)
\(>\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{10}{10}=10\)
cho a,b,c là 3 số thực không âm thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c)
Câu 1: Chứng minh rằng:
1/ căn 1+1/căn2+1/căn 3+1/căn 4+1/căn 5+...+1/căn 100>10
Câu 2: Tìm các số nguyên dương x;y
\(2^x+2^y=72 \)
A= 1+ 2/ căn x + 1 và B = căn x / căn x - 1 + 1/ căn x +2 - 3 căn x / x + căn x - 2
a tính giá trị biểu thức khi x =5
b Chứng minh B = căn x + 1 / căn x + 2
\(A=1+\frac{2}{\sqrt{x}+1};B=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
đề bài là thế này ạ!?
cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = x/ căn (1+a)(1+b)(1+c)
cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi
1. 3 căn 2-4 căn 18+2 căn 32-căn 50
2. căn 50-căn 18+căn 200-căn 162
3. 5 căn 5+căn 20-3 căn 45
4. 5 căn 48-4 căn 27-2 căn 75+căn 108
5.1/2 căn 48-2 căn 75-căn 33/căn 11+5 căn 1 1/3
1) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
\(=-6\sqrt{2}\)
2) \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}\)
\(=3\sqrt{2}\)
3) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
\(=5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
\(=-2\sqrt{5}\)
4) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
\(=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)
\(=4\sqrt{3}\)
5) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10}{3}\sqrt{3}\)
\(=-\dfrac{17}{3}\sqrt{3}\)
Chứng minh
1/ 2 căn 1+ 1/ 3 căn 2+ 1/4 căn 3+...+1/2005 căn 2004<2