10^99 + 10^98+...10^1 +1
10 mũ 99 + 10 mũ 98 + 10 mũ 1 + 1
1099 + 1098 + 101 + 1
= 1098 . 10 + 1098 + 101 + 1
= 1098 . 10 + 1098 . 1 + 10 + 1
= 1098 . ( 10 + 1 ) + 11
= 1098 . 11 + 11
= 11 . 1098 + 11
= 12198 + 11
= ( 112 )98 + 11
= 11196 + 11
10 mũ 99 + 10 mũ 98 +...+ 10 mũ 1 + 1
Đặt \(A=10^{99}+10^{98}+...+10+1\)
\(\Rightarrow10A=10^{100}+10^{99}+...+10^2+10\)
\(\Rightarrow10A-A=10^{100}-1\)
\(\Rightarrow A=\frac{10^{100}-1}{9}\)
A=10^99+1 / 10^89+1
B= 10^98+1 / 10^88+1
So sánh A và B
Tính chất nếu:
\(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)
Ta có:
\(A=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}\)
\(A>\dfrac{10^{99}+10}{10^{89}+10}\)
\(A>\dfrac{10\cdot\left(10^{98}+1\right)}{10\cdot\left(10^{88}+1\right)}\)
\(A>\dfrac{10^{98}+1}{10^{88}+1}\)
\(A>B\)
\(A=\dfrac{10^{99}+1}{10^{89}+1}< \dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{89}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}\)
Vậy \(A< B\)
So sánh:
a) G=10^100+2/10^100-1 và H=10^8/10^8-3
b) E=98^99+1/98^89+1 và F=98^98/98^88+1
c) 5/3 và 5+m/3+m với m thuộc N*
so sánh a và b A=10^100+1\10^90+1 B=10^99+1^10^98+1
101+100+99+98+................+3+2+1trên 101-10+99-98+............+3-2+1
Cách giải của mik:
ghép A= (100-98) + (99-97) + (96-94) +....+ (8-6) + (7-5) + (4-2) + (3-1).
A có 100 số ghép thành 50 cặp mỗi cặp có hiệu =2 ==> A = 50x2 =100.
cách 2 :
ta có A=100+99 - 98-97 + 96+95 - 94-93 +... +8+7 -6-5 +4+3 -2-1 (có 100 số ) (1)
COI B=0= 2+2 - 2-2 +2+2 - 2-2 +...+ 2+2 - 2-2 +2+2 -2-2 (có 100 số 2)
=> A+B = A= 102+101 -100-99+ 98+97 - 96-95+ ...+ 10+9 -8-7+ 6+5 -4-3 (2)
Lấy (1) + (2) ta được:
2A = 102+101 -2-1 = 200
=> A= 100.
Giải:
Ta có: 101+100+99+...+3+2+1=5151 (lần trước bạn hỏi rồi nhé)
101-10+99-98+...+3-2+1
=(101-10)+(99-98)+...+(3-2)+1
=91+1+...+1+1 (99 số 1)
=92+99x1
=92+99
=191
=>\(\frac{101+100+99+...+3+2+1}{101-10+99-98+...+3-2+1}=\frac{5151}{191}\)
so sánh
a) 2001/2002 và 2000/2001
b) (1 / 80)^7 và (1 / 243)^6
c) (3 / 8)^5 và (5 / 243)^3
d) A= 2011/2012 + 2012/2013 và B= 2011+2012/2012+2013
e) C = 20^10 + 1 / 20^10-1 và D= 20^10-1 / 20^10-3
g) G= 10^100 +2/ 10^100-1 và H = 10^8/10^8-3
h) E= 98^99+1/ 98^89+1 và F= 98^98 +1/ 98^88+1
a, Ta có: \(\frac{2001}{2002}=\frac{2002-1}{2002}=\frac{2002}{2002}-\frac{1}{2002}=1-\frac{1}{2002}\)
\(\frac{2000}{2001}=\frac{2001-1}{2001}=\frac{2001}{2001}-\frac{1}{2001}=1-\frac{1}{2001}\)
Vì \(\frac{1}{2002}< \frac{1}{2001}\Rightarrow1-\frac{1}{2002}>1-\frac{1}{2001}\Rightarrow\frac{2001}{2002}>\frac{2000}{2001}\)
b, Ta có: \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)^7=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)
\(\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{30}}\)
Vì \(\frac{1}{3^{28}}>\frac{1}{3^{30}}\Rightarrow\left(\frac{1}{81}\right)^7>\left(\frac{1}{243}\right)^6\Rightarrow\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^6\)
c, Ta có: \(\left(\frac{3}{8}\right)^5=\frac{3^5}{\left(2^3\right)^5}=\frac{243}{2^{15}}>\frac{243}{3^{15}}>\frac{125}{3^{15}}=\frac{5^3}{\left(3^5\right)^3}=\frac{5^3}{243^3}=\left(\frac{5}{243}\right)^3\)
Vậy \(\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)
d, Ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
e, \(C=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(D=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)
Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\Rightarrow C< D\)
g, \(G=\frac{10^{100}+2}{10^{100}-1}=\frac{10^{100}-1+3}{10^{100}-1}=\frac{10^{100}-1}{10^{100}-1}+\frac{3}{10^{100}-1}=1+\frac{3}{10^{100}-1}\)
\(H=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^{100}-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^{100}-1}< 1+\frac{3}{10^8-3}\Rightarrow G< H\)
h, Vì E < 1 nên:
\(E=\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=F\)
Vậy E = F
so sánh \(\frac{10^{99}+1}{10^{98}+1}\)va \(\frac{10^{98}+1}{10^{97}+1}\)
So sánh A và B:
a) A = \(\frac{10^{19}+1}{10^{20}+1}\); B = \(\frac{10^{20}+1}{10^{21}+1}\)
b) A = \(\frac{9^{99}+1}{9^{100}+1}\); B = \(\frac{10^{98}-1}{10^{99}-1}\)