tìm x,y thỏa mãn /x+ \(\frac{8}{5}\)+ /2,2-2y/ bé hơn hoặc bằng 0
Tìm x , y thỏa mãn : | x + 8/5 | + | 2,2 - 2y | bé hơn hoặc bằng 0
|x + 8/5| + |2,2 - 2y| \(\le\) 0
Mà |x + 8/5| ; |2,2 - 2y| \(\ge\) 0
Nên |x + 8/5| = |2,2 - 2y| = 0
=> x = -8/5 ; y = 1,11
Tìm x; y thỏa mãn
|x+8/5| + |2,2 - 2y| < hoặc = 0
Giúp mik với:
tìm x,y thỏa mãn biết:
a, l 5x+1 l + l 6y-8 l nhỏ hơn hoặc bằng 0
b, l x+2y l + l 4y-3 l nhỏ hơn hoặc bằng 0
c, l x-y+2 l + l 2y+1 l nhỏ hơn hoặc bằng 0
mỗi câu 1 tick
cho các số x y thỏa mãn (x-2)^4+(2y-1)^2022 bé hơn hoặc bằng 0 Tính giá trị cua biểu thức M=11xy^2+4xy^2
\(\left(x-2\right)^4+\left(2y-1\right)^{2022}< =0\)
mà \(\left(x-2\right)^4+\left(2y-1\right)^{2022}>=0\forall x,y\)
nên \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(M=11xy^2+4xy^2=15xy^2=15\cdot2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{15}{2}\)
Cho x>0,y>0 thỏa mãn x+y bé hơn hoặc bằng 1
CMR: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.
Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!
Cho x,y>0 thỏa mãn x+y bé hơn hoặc bằng 4
Tìm Min A=\(\frac{2}{x^2+y^2}\) + \(\frac{35}{xy}\) +2xy
Tìm x và y thỏa mãn :
\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
Giúp mk nha !!
Vì \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)
=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)
Mà theo đề bài \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)
=>\(\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\2y=2,2\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\y=1,1=\frac{11}{10}\end{cases}}\)
Tính giá trị biểu thức:M=21x^2y+4xy^2 với x, y thỏa mãn: (x-2)^4+(2y-1) bé hơn hoặc bằng 0
nhanh giúp mk nha
ai nhanh mk tick cho
câu 1: Số phần tử của tập hợp các số nguyên x thỏa mãn -6/2 bé hơn hoặc bằng x bé hơn hoặc bằng 5/2 là
câu 2 -10/15 = x/-9 = -8/y = z/-21. Khi đó x+y+z bằng
câu 3 tổng bình phương của các số nguyên x thỏa mãn -5/2 bé thua x bé thua hoặc bằng 1/2 là
Giải giúp mình nha các bạn đúng và nhanh mình tick nha