Rút gọn
\(\frac{x^3-53x+88}{\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)+16}\)
Rút gọn biểu thức :
\(\frac{x^3-53x+88}{\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)+16}\)
Giúp tôi với
Ta có:
\(A=\frac{x^3-53x+88}{\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)+16}=\frac{\left(x^3+8x^2\right)-\left(8x^2+64x\right)+\left(11x+88\right)}{\left[\left(x-1\right)\left(x-7\right)\right]\left[\left(x-3\right)\left(x-5\right)\right]+16}=\frac{x^2\left(x+8\right)-8x\left(x+8\right)+11\left(x+8\right)}{\left[x^2-8x+7\right]\left[x^2-8x+15\right]+16}=\frac{\left(x+8\right)\left(x^2-8x+11\right)}{\left[x^2-8x+7\right]\left[x^2-8x+15\right]+16}\)
Gọi \(x^2-8x+11=y\)
\(\Rightarrow A=\frac{y\left(x-8\right)}{\left(y-4\right)\left(y+4\right)+16}=\frac{y\left(x-8\right)}{y^2-16+16}=\frac{y\left(x-8\right)}{y^2}=\frac{x-8}{x^2-8x+11}\)
Rút gọn \(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)
1/ (x+1)(x+2) +1/ (x+2)(x+3) +1/ (x+3)(x+4) +1/ (x+4)(x+5)
=1/x+1 -1/x+2 +1/x+2 -1/x+3 +1/x+3 -1/x+4 +1/x+4 -1/x+5
=1/x+1 -1/x+5
=4/(x+1)(x+5)
\(=\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)
\(=\frac{1}{x+1}-\frac{1}{x+5}=\frac{x+5-x-1}{\left(x+1\right)\left(x+5\right)}=\frac{4}{\left(x+1\right)\left(x+5\right)}\)
Rút gọn \(\frac{1}{\left(x+y\right)^3}.\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^5}.\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}.\left(\frac{1}{x}+\frac{1}{y}\right)\)
Rút gọn phân thức
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+..+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}=\frac{-5}{x\left(x-5\right)}\)
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}\)
\(=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}\)
\(=\frac{x-5-x}{x\left(x-5\right)}\)
\(=-\frac{5}{x\left(x-5\right)}\)
Rút gọn biểu thức sau: A=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+4\right)\left(3-x\right)}\)
Rút gọn \(B=\left(x^4-x+\frac{x-3}{x^3+1}\times\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right)\times\frac{4x^2+6x+1}{\left(x+3\right)\left(4-x\right)}\)
Rút gọn: \(\frac{1}{\left(x+y\right)^3}.\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^5}.\)\(\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}.\left(\frac{1}{x}+\frac{1}{y}\right)\)
Rút gọn:
\(\frac{1}{\left(x+y\right)^3}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
Rút gọn biểu thức \(B=\left(\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2\right):\left(\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}\right)\)