Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thế Duy
Xem chi tiết
Triệu Minh Anh
9 tháng 8 2019 lúc 21:08

Vì O là tâm của ngũ giác abcde nên O cũng là trọng tâm của ngũ giác nên vecto oa+ob+oc+od+oe=0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 12 2018 lúc 13:40

Các vecto cùng phương  O C →  với  có điểm đầu và điểm cuối là các đỉnh của lục giác

: .

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 6 2019 lúc 5:11

Chọn C.

Các vecto cùng phương với  có điểm đầu và điểm cuối là các đỉnh của lục giác

Hà Lan Hương
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết

Vì ABCDEG là lục giác đều nên:

Các đường chéo chính bằng nhau và cắt nhau tại O, tạo nên các tam giác đều.

Do vậy, các cạnh OA = OB = OC = OD = OE = OG và bằng nửa độ dài đường chéo chính.

Đặng Thu Hà
Xem chi tiết
Hoàng Thuỳ Dương
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 16:09

\(T=\left|\overrightarrow{DF}\right|=\left|\overrightarrow{DE}+\overrightarrow{EF}\right|\Rightarrow T^2=DE^2+EF^2+\overrightarrow{DE}.\overrightarrow{EF}\)

\(=a^2+a^2+a.a.cos60^0=3a^2\)

\(\Rightarrow\left|\overrightarrow{DF}\right|=a\sqrt{3}\)

\(AC=FD\Rightarrow\left|\overrightarrow{AC}\right|=a\sqrt{3}\)

\(P=\left|\overrightarrow{AI}\right|=\left|\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AC}\right|\Rightarrow P^2=\dfrac{1}{4}\left(AD^2+AC^2+2\overrightarrow{AD}.\overrightarrow{AC}\right)\)

\(=\dfrac{1}{4}\left(4a^2+3a^2+2.2a.a\sqrt{3}.cos30^0\right)=\dfrac{11}{2}a^2\)

\(\Rightarrow\left|\overrightarrow{AI}\right|=\dfrac{a\sqrt{22}}{2}\)

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 16:09

undefined

Ngô Bảo Ngọc
Xem chi tiết
tran bach sang
24 tháng 7 2023 lúc 17:01

O là trung điểm của của ABCDEG nên KHI VÀ CHỈ KHI các cạnh nối O đều bằng nhau

sorry bạn, mình lớp 7 nên cách trình bày hơi khác

Phú Phạm Minh
Xem chi tiết