phan tich thanh nhan tu
a4-b2(2a-b)2
Phan tich da thuc thanh nhan tu
a(a+2b)^3-b(2a+b)^3
=a(a+2b)^3-[-b(a+2b)^3]
=(a+2b)^3(a+b)
1 phan tich da thuc thanh nhan tu
a) 4x^2 - 49
b) a^2 -2a -b^2 -2b
a/ \(4x^2-49=\left(2x\right)^2-7^2=\left(2x-7\right)\left(2x+7\right)\)
b/ \(a^2-2a-b^2-2b=\left(a^2-2a+1\right)-\left(b^2+2b+1\right)=\left(a-1\right)^2-\left(b+1\right)^2\)
\(=\left(a-1-b-1\right)\left(a-1+b+1\right)=\left(a-b-2\right)\left(a+b\right)\)
phan tich da thuc sau thanh nhan tu bang nhom hang tu x\(^2\) -(a+b).x+ab
ax-2x-a\(^2\) +2a
x\(^2\)-(a+b)x+ab
= x\(^2\)-ax-bx+ab
= x(x-a) - b(x-a)
= ( x-a).( x-b)
ax-2x-a\(^2\)+2a
= x(a-2) - a(a-2)
= (a-2).( x-a)
a) x^2 + y^2 -25 +2xy
b) a ^2- 2a -4b^2-4b
c)a^2-b^2-5a-5b
phan tich da thuc thanh nhan tu
\(a,=\left(x+y\right)^2-5^2=\left(x+y+5\right)\left(x+y-5\right)\)
\(b,=\left(a-1\right)^2-1-\left(2b+1\right)^2-1=\)
\(c,=\left(a-b\right)\left(a+b\right)-5\left(a+b\right)=\left(a+b\right)\left(a-b-5\right)\)
a,( x2 + 2xy + y2 ) -25
=( x + y )2 - 52
=( x + y + 5) ( x + y - 5)
b,
phan tich thanh nhan tu 9a^2-6ab+b^2-1
\(9a^2-6ab+b^2-1=\left(3a-b\right)^2-1^2=\left(3a-b-1\right)\left(3a-b+1\right)\)
9a^2 - 6ab + b^2 - 1= (3a)^2 - 2.3a.b + b^2 -1
= (3a - b)^2 - 1^2
= (3a - b - 1).(3a - b + 1)
9a2 - 6ab + b2 - 1 = (3a - b)2 - 1
= (3a - b + 1)(3a-b-1)
B1: Tim cac chu so a, b sao cho a56b chia het cho 45.
B2: Phan tich da thuc thanh nhan tu: x3 + 4x2 - 29x + 24
Phan tich da thuc thanh nhan tu:
2a+6b+15c
4m^2n-8m^2n-12n
a^4-b^4
16b^4-9c^2
5a(x+y)+x+y
b: \(4m^2n-8m^2n-12n\)
\(=-4m^2n-12n\)
\(=-4n\left(m^2+3\right)\)
c: \(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(a-b\right)\left(a+b\right)\)
d: \(16b^4-9c^2\)
\(=\left(4b^2-3c\right)\left(4b^2+3c\right)\)
e: \(5a\left(x+y\right)+x+y=\left(x+y\right)\left(5a+1\right)\)
Phan tich da thuc thanh nhan tu: a^2+2ab+b^2-ac-bc
a2 + 2ab + b2 - ac - bc
= (a+b)2 -c(a+b)
= (a+b)(a+b-c)
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them