Chứng tỏ rằng : ab+ba chia hết cho 11 ; abc- cba chia hết cho 99
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
chứng tỏ rằng a+b chia hết cho 2
chứng tỏ rằng ab+ba chia hết cho 11
ab=10.a+b
ba=10.b+a
ab+ba=11.a-11.b=11.(a-b)=> ab+ba chia hết cho 11
cái đầu thiếu đề (không có dữ liệu chính)
Ta có: ab + ba = (10a.1b) + (10b.1a)
=> (1b+10b).(1a+10a)
= 11b + 11a
= 11.2.ab chia hết cho 11
=> đpcm
a) Chứng tỏ rằng a b ¯ + b a ¯ chia hết cho 11.
Chứng tỏ rằng:
a)ab-ba chia hết cho 9
b)Nếu ab + cd chia hết cho 11 thì abcd chia hết cho 11
a) ab - ba = a .10+b - (b .10+a)
= a .10+b - b .10 - a
=( a .10 - a)-(b.10-b)
= a.9-b.9
= 9.(a-b) chia het cho 9
b) abcd = ab .100 +cd
= ab .99 +ab+cd
= ab .11 . 9 +(ab+cd)
vì ab .11 .9 chia hết cho 11 nên nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
b)Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
a)chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b)chứng minh rằng ab+ba chia hết cho 11
a) ab(a+b) = a2b + ab2 = 2ab2 chia hết cho 2
b)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
chứng tỏ rằng ab+ba chia hết cho 11
ab+ba=10a+b+10b+a=11a+11b chia hết cho 11
Chứng tỏ rằng ab + ba chia hết cho 11
ab = 10 (a + b)
ba = 10 (b + a)
=> ab + ba = 11 (a+b) chia hết cho 11
\(\overline{ab}+\overline{ba}\)
\(=10a+b+10b+a\)
\(=\left(10+1\right)a+\left(10+1\right)b\)
\(=11a+11b\)
\(=11\left(a+b\right)⋮11\) (đpcm)
ab+ba chia hết cho 11
ab=10a+b ba=10b+a
ab+ba=10a+b+10b+a
=(10a+a)+(10b+b)
=11a+11b
vậy:ab+ba chia hết cho 11(vì mik chứng minh a chia hết cho b khi a=k.b)
chứng tỏ rằng
ab + ba chia hết cho 11
ab - ba chìa hết cho 9 ( a > b )
Ta có : ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11(a + b) chia hết cho 11
Ta có: câu 1 : ab + ba = 10a + b +10b +a
=11a +11b =11(a+b)
=> ab + ba chia hết cho 11
câu 2 : ab - ba = 10a +b -10b -a
=9a - 9b =9(a-b) với điều kiện a >b
=> ab - ba chia hết cho 9
Cách làm của cô tớ:
Ta có: ab + ba
=( 10 x a + b ) + (10 x b + a)
= 11a + 11b
= > 11 ( a+ b) chia hết cho 11
chứng tỏ rằng tổng ab+ba luôn chia hết cho 11
ab+ba
=10a+b+10b+a
=11a+11b
=11(a+b)chia hết cho 11
=>ab+ba chia hết cho 11
Ta có: ab+ba = 10a+b + 10b+a = (10a+a)+(10b+b) = 11a + 11b = 11(a+b) luôn chia hết cho 11
Tick đúng cho mk nha!!!!!!!!!!
ta có ab+ba=10a+b+10b+a=11a+11b=11(a+b)
ta có 11(a+b) là h của 11 và a+b
=> 11(a+b) luôn chia hết cho 11
=> ab+ba chia hết cho 11
k nha
Học tốt