Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mỹ Hạnh
Xem chi tiết
đanh khoa
Xem chi tiết
Mathematics❤Trần Trung H...
26 tháng 5 2019 lúc 22:35

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Mathematics❤Trần Trung H...
26 tháng 5 2019 lúc 22:35

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Mathematics❤Trần Trung H...
26 tháng 5 2019 lúc 22:35

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Nguyễn Thị Phương Duyên
Xem chi tiết
Nguyễn Linh Chi
9 tháng 10 2019 lúc 10:03

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Nguyễn Thị Ngọc
Xem chi tiết
ngôi sao tình yêu
Xem chi tiết
Nguyễn Trâm Anh
16 tháng 10 2018 lúc 12:10

Với n chẵn thì n = 2k

\(\Rightarrow16^{2k}-1=256^k-1=\left(256-1\right)\left(256^{k-1}+...\right)\)\(=255\left(256^{k-1}+...\right)=17.15.\left(256^{k-1}+...\right)\)

Chia hết cho 17

Với n lẻ thì n = 2k + 1

\(\Rightarrow16^{2k+1}-1=16\left(16^{2k}-1\right)+15\)không chia hết cho 17

Vậy 16n - 1 chia hết cho 17 khi và chỉ khi n là số chẵn

nguyễn hoàng phương
Xem chi tiết
Nguyễn Linh Chi
9 tháng 10 2019 lúc 9:58

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

vũ lợn vui vẻ ko ủ rũ
27 tháng 1 2021 lúc 22:46

Ta phân tích biểu thức đã cho ra nhân tử :

A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n

=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)

=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)

=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

Tinni Chan
Xem chi tiết
Nguyễn Thùy Trang
20 tháng 1 2020 lúc 18:12

Bạn tham khảo tại đây nhé!! 

olm.vn/hoi-dap/detail/195135296784.html

Khách vãng lai đã xóa
Chu Công Đức
20 tháng 1 2020 lúc 18:33

\(n^4-4n^3-4n^2+16n=n\left(n^3-4n^2-4n+16\right)\)

\(=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]=n\left(n-4\right)\left(n^2-4\right)=n\left(n-4\right)\left(n-2\right)\left(n+2\right)\)

Vì n là số tự nhiên chẵn \(\Rightarrow n=2k\)\(k\inℕ\))

\(\Rightarrow2k\left(2k-4\right)\left(2k-2\right)\left(2k+2\right)=16k\left(k-2\right)\left(k-1\right)\left(k+1\right)\)

Vì \(k\)\(k-2\)\(k-1\)\(k+1\)là 4 số tự nhiên liên tiếp

\(\Rightarrow\)Luôn tồn tại ít nhất 2 số chẵn liên tiếp \(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮8\)

Vì \(k\)\(k-1\)\(k+1\)là 3 số tự nhiên liên tiếp \(\Rightarrow k\left(k-1\right)\left(k+1\right)\left(k-2\right)⋮3\)

mà \(\left(3;8\right)=1\)\(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮24\)

\(\Rightarrow16k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮384\)

hay \(n^4-4n^3-4n^2+16n⋮384\)

Khách vãng lai đã xóa
Vũ Hồng Nhung
Xem chi tiết
Bùi Hồng Thắm
13 tháng 11 2015 lúc 15:20

TẤT CẢ ĐỀU CÓ TRONG  " câu hỏi tương tự "

do thi kieu trinh
Xem chi tiết
Đinh Tuấn Việt
22 tháng 9 2015 lúc 21:41

Bài 1 :

Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ

Bài 2 :

Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn