Biết \(x^2-3y^2=2xy\) va y khác 0. x+y khác 0
Tính
\(\frac{2x-3y}{4x+5y}\)
\(tính M= { 2x-3y/2x+3y} với x^2-2xy=3y^2 x+y khác 0, y khác 0 2x+3 khác 0\)
2) Tìm x, y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)(với x, y khác 0)
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
chứng minh giá trị của A luôn không âm với mội giá trị khác 0 của x,y A=(75x^5y^2-45x^4y^3):3x^3y^2-(5/2x^2y^4-2xy^5):1/2xy
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Cho các số x,y,z khác thỏa mãn $\frac{2x-3y}{5}$ =$\frac{5y-2z}{3}$ =$\frac{3z-5x}{2}$
Tính giá trị biểu thức B=$\frac{12x+5y-3z}{x-3y+2z}$
cho x y z khác 0 biết (2x-3z)/5=(5y-2z)/3=(3z-5x)/2.tính B=(12x+5y-3z)/x-3y+2z
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Tìm x,y biết:
a, 2x2 + 3y2 + 4xy - 8x - 2y + 17 = 0
b, 4x2 + 5y2 - 18x + 4x - 4xy + 35 = 0
c, x2 + 2xy + 5y2 - 4x - 8y + 2019 = 0
phân tích thành nhân tử
b. x^2+2xy+y^2-16
c. 3x^2+5x-3xy-5y
d. 4x^2-6x^3y-2x^2+8x
e. x^2-4-2xy+y^2
k. x^2-y^2-z^2-2yz
m. 6xy+5x-5y-3x^2-3y^2
b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)
c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)
d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)
e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)
k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)
m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)
b. (x^2+2xy+y^2)-16 =(x+y)^2-16=(x+y+4)(x+y-4)