Tìm 3 số hữu tỷ biết
X+2y=5,y+2z=-7;z+2x=14
Tìm 3 số hữu tỷ biết
X+2y=5,y+2z=-7;z+2x=14
\(\hept{\begin{cases}x+2y=5\\y+2z=-7\\z+2x=14\end{cases}}\)
\(\Leftrightarrow x+y+z+2y+2z+2x=5-7+14\)
\(\Leftrightarrow x+y+z+2\left(x+y+z\right)=12\)
\(\Leftrightarrow3\left(x+y+z\right)=12\)
\(\Leftrightarrow x+y+z=4\)
\(\Leftrightarrow\hept{\begin{cases}x+2y=5\\y+2z=-7\\z+2x=14\end{cases}\Leftrightarrow\hept{\begin{cases}4-y-z+2y=5\\y+2z=-7\\z+8-2y-2z=14\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y-z=5\\y+2z=-7\\2y+z=-6\end{cases}}\)
tìm các số hữu tỉx,y,z biếtx(x+y+z=-5;y(x+y+z)=9;z(x+y+z)=5
Tìm các số hữu tỉ x, y, z biết: (2x-3y)/13=(2y-7z)/17=(3-4z)/11 và 2x+y-2z=23
tìm x,y biết
x^3+y^3/6=x^3-2y^3 và x^6 .y^6
Tìm x,y thuộc Z biết
x^2-2x+2^2y-2^y+3+17=0
Tìm x,y thuộc Z biết
x^2-2x+2^2y-2^y+3+17=0
Tìm số hữu tỷ x, y :
a, x - 2y = 4x - y = y : x
b, x - 2y = 2.(x + y) = x : y
cho x,y,z là 3 số thực dương, biết xyz=1. tìm GTLN của biểu thức
P = \(\frac{x^2y^2}{x^2y^2+x^7+y^7}+\frac{y^2z^2}{y^2z^2+y^7+z^7}+\frac{x^2z^2}{x^2z^2+x^7+z^7}\)
ap dung bdt \(x^{m+n}+y^{m+n}\ge x^my^n+x^ny^m\) (bn tu cm )
\(\Rightarrow x^7+y^7=x^{3+4}+y^{3+4}\ge x^3y^4+x^4y^3\)
\(\Rightarrow\frac{x^2y^2}{x^2y^2+x^7+y^7}\le\frac{x^2y^2}{x^2y^2\left(1+xy^2+x^2y\right)}=\frac{1}{1+x^2y+y^2x}=\frac{1}{xyz+x^2y+y^2x}=\frac{1}{xy\left(x+y+z\right)}=\)
=\(\frac{z}{xyz\left(x+y+z\right)}=\frac{z}{x+y+z}\)
ttu \(P\le\frac{x+y+z}{x+y+z}=1\) đầu = xảy ra khi x=y=z=1
Biếtx, y là các số nguyên thỏa mãn 3 x y - 2y + 6 x = 0 tính x + y
\(3xy-2y+6x=0\)
\(\Leftrightarrow3xy+6x-2y-4+4=0\)
\(\Leftrightarrow3x\left(y+2\right)-2\left(y+2\right)+4=0\)
\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=-4\)
Vì x,y là các số nguyên nên y+2 và 3x-2 cũng là các số nguyên
\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=1.\left(-4\right)=\left(-1\right).4\)
Ta có bảng sau:
y+2 | -1 | 4 | -4 | 1 |
y | -3 | 2 | -6 | -1 |
3x-2 | 4 | -1 | 1 | -4 |
3x | 6 | 1 | 3 | -2 |
x | 2 | \(\dfrac{1}{3}\)(loại) | 1 | \(\dfrac{-2}{3}\)(loại) |
TH1: \(y=-3\) ;\(x=2\) thì \(x+y=2+\left(-3\right)=-1\)
TH2: \(y=-6;x=1\) thì \(x+y=-6+1=-5\)
Vậy \(x+y=-1\) khi \(y=-3\) và \(x=2\)
\(x+y=-5\) khi \(y=-6;x=1\)
Giải:
Ta có:
\(3xy-2y+6x=0\)
\(\Rightarrow3x.\left(y+2\right)-2y-4=-4\)
\(\Rightarrow3x.\left(y+2\right)-2.\left(y+2\right)=-4\)
\(\Rightarrow\left(3x-2\right).\left(y+2\right)=-4\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(y+2\right)\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng giá trị:
3x-2 | -4 | -2 | -1 | 1 | 2 | 4 |
y+2 | 1 | 2 | 4 | -4 | -2 | -1 |
x | \(\dfrac{-2}{3}\) (loại) | 0 (t/m) | \(\dfrac{1}{3}\) (loại) | 1 (t/m) | \(\dfrac{4}{3}\) (loại) | 2 (t/m) |
y | -1 | 0 | 2 | -6 | -4 | -3 |
Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;-6\right);\left(2;-3\right)\right\}\)
\(\left(+\right)TH1:x+y=0+0=0\)
\(\left(+\right)TH2:x+y=1+-6=-5\)
\(\left(+\right)TH3:x+y=2+-3=-1\)
Chúc bạn học tốt!