Chứng minh rằng \(2^{2n}.\left(2^{2n+1}-1\right)-1\) chia hết cho 9 với n thuộc \(N^{\cdot}\)
cho f(n)=(n2 + n +1 )2 +1 với n thuộc N* . Đặt \(p_n=\frac{f_{\left(1\right)}\cdot f_{\left(3\right)}\cdot f_{\left(5\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n-1\right)}}{f_{\left(2\right)}\cdot f_{\left(4\right)}\cdot f_{\left(6\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n\right)}}\)
chứng minh rằng : P1 + P2 +P3 +................+ Pn <1/2
chứng minh rằng 2^2n * (2^2n+1 -1)-1 chia hết cho 9 với n thuộc N
minh van chua ro phan de 2^2n+1-1 la (2^2n+1) hay nhu de ghi ban a
Chứng minh rằng n thuộc Z
\(a,\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
\(b,\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)
\(=\left(2n-1\right).4.n\left(n-1\right)\)
\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)
\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)
\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)
Bài 1 : Chứng minh rằng \(\left(2n+3\right)^2-\left(2n-1\right)^2\) chia hết cho 8 với n thuộc Z
\(\left(2n+3\right)^2-\left(2n-1\right)^2=4n^2+12n+9-4n^2+4n-1=16n+8=8\left(2n+1\right)⋮8\)
\(\left(2n+3\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+3-2n+1\right)\left(2n+3+2n-1\right)\)
\(=4\left(4n-2\right)\)
\(=8\left(2x-1\right)\) Vì \(8⋮8\)
\(\Rightarrow8\left(2n-1\right)⋮(ĐPCM)\)
Chứng minh rằng
\(\frac{1\cdot3\cdot5\cdot\cdot\cdot\left(2n-1\right)}{\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)\cdot...\cdot2n}=\frac{1}{2^n}\)
chứng minh rằng với mọi số nguyên n thì:
S=\(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\) chia hết cho 5
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)
Chứng minh rằng :
\(\frac{1\cdot3\cdot5\cdot...\cdot\left(2n-1\right)}{\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)\cdot...\cdot2n}=\frac{1}{2^n}\)
1. Chứng minh 2n+5 và 4n+9 là hai số nguyên tố cùng nhau với mọi số tự nhiên n\
2. Tìm số tự nhiên n biết \(\left(3n+5\right)⋮\left(2n+1\right)\)
3 . Cho a+7b chia hết cho 11. Chứng minh rằng 8a+b chia hết cho 11
Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều
chứng minh rằng :
\(35^{25}-35^{24}\) chia hết cho 17
bài 2 : chứng minh rằng :
\(n\left(2n-3\right)-2n\left(n+1\right)\) chia hết cho 5 với mọi số nguyên