rút gọn:\(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)với a>0
rút gọn :
B=\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}+a-1}\right)^2\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\) với 0<a<1
Trên olm rất ít người học lớp 9 dùng , bạn có thể lên Hh để các thầy cô giảng cho nhé !
Bài 1: Rút gọn:\(A=\left(\frac{1}{2+2\sqrt{a}}+\frac{1}{2-2\sqrt{a}}-\frac{a^2+1}{1-a^2}\right):\left(1+\frac{1}{a}\right)\)VỚI a>0, a# 1
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
\(ChoQ=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a, rút gọn
b, chứng minh nếu 0<x<1 thì Q>0
c, tìm GTLN của Q
\(ChoA=\frac{1}{2\left(1+\sqrt{x}+2\right)}+\frac{1}{2\left(1-\sqrt{x}+2\right)}\)
a, tìm x để a có nghĩa
b, rút gon A
c, tìm X nguyên để A nguyên
\(ChoA=\left(\frac{\sqrt{a}}{\sqrt{a-1}}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2}{a-1}\right)\)
a, Rút gọn A
b, tính A Khi a=3+\(2\sqrt{2}\)
rút gọn biểu thức:
\(Q=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(A=\left(1-\frac{2\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}+a+1}\right)\)với a lớn hơn hoặc bằng 0; a khác 1
\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)....\)
a) Rút gọn A, b) tìm a để A<0.c) Tìm A để A=-2
\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\).\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
= \(\left[\left(\frac{\sqrt{a}}{2}\right)^2-2\frac{\sqrt{a}}{2}\frac{1}{2\sqrt{a}}+\left(\frac{1}{2\sqrt{a}}\right)^2\right]\).\(\left[\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{a-1}\right]\)
=\(\left(\frac{a}{4}-\frac{1}{2}+\frac{1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1\right)^2}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)^2}{a-1}\right]\)
=\(\left(\frac{a^2}{4a}-\frac{2a}{4a}+\frac{1}{4a}\right)\).\(\left[\frac{\left[\left(\sqrt{a}-1\right)-\left(\sqrt{a}+1\right)\right]\cdot\left[\left(\sqrt{a}-1\right)+\left(\sqrt{a}+1\right)\right]}{a-1}\right]\)
=\(\left(\frac{a^2-2a+1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1-\sqrt{a}+1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right]\)
=\(\frac{\left(a-1\right)^2}{1}\).\(\frac{-4\sqrt{a}}{a-1}\)
=\(\frac{-\left(a-1\right)}{1}\)= - a + 1
hok tốt
2,1. Rút gọn M = \(\left(\frac{1}{a+\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right):\frac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
Với a > 0 ; a # 1
Rút gọn biểu thức: \(A = \frac{{{{\left( {{a^{\sqrt 2 - 1}}} \right)}^{1 + \sqrt 2 }}}}{{{a^{\sqrt 5 - 1}}.{a^{3 - \sqrt 5 }}}}\,\,\,\left( {a > 0} \right).\)
\(=\dfrac{a^{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}{a^{\left(\sqrt{5}-1\right)+\left(3-\sqrt{5}\right)}}=\dfrac{a}{a^{\sqrt{5}-1+3-\sqrt{5}}}=\dfrac{a}{a^2}=\dfrac{1}{a}\)
Rút gọn:
\(S=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4+b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\\ \)
với a, b>0
rút gọn \(P=\left(\frac{1}{2\sqrt{a}-a}+\frac{1}{2-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}}\)với a>0 và a # 4
\(=\left(\frac{1}{\sqrt{a}\left(2-\sqrt{a}\right)}+\frac{1}{2-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(2-\sqrt{a}\right)}.\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-2}{2-\sqrt{a}}\)