\(\sqrt{x-1}=3.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=3.\left(2018+2019+2020\right)^0\)
Gọi pt đề bài là (*)
Ta có (*) <=> x - 1 = 32
<=> x = 10
\(\sqrt{x-1}=3.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=3\)
\(\sqrt{x-1}^2=3^2\)
\(x-1=9\)
\(x=9+1\)
\(\Rightarrow x=10\)
\(\sqrt{x-1}=3.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=3.1\)
\(\sqrt{x-1}=3\)
\(x-1=3^2\)
\(x-1=9\)
\(x=9+1\)
\(x=10\)
Hok tốt :p
Giúp mình vs!!
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\) mũ 0
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}^2=5^2\)
\(x-1=25\)
\(x=25+1\)
\(\Rightarrow x=26\)
Mình làm hơi tắt, để mình làm lại nhé!
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=5\)
\(\sqrt{x-1}^2=5^2\)
\(x-1=25\)
\(x=25+1\)
\(\Rightarrow x=26\)
Ta có: \(f\left(2019\right)=2020=2019+1\)
\(f\left(2020\right)=2021=2020+1\)
Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)
\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)
\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số nguyên
\(\Rightarrow g\left(x\right)=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)\)(\(a\in\)Z*)
\(\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)
\(=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)+x+1\)
\(f\left(2021\right)=a\left(2021-2019\right)\left(2021-2020\right)\left(2021-x_0\right)+2021+1\)
\(=a.1.2\left(2021-x_0\right)+2022\)
\(f\left(2018\right)=a\left(2018-2019\right)\left(2018-2020\right)\left(2018-x_0\right)+2018+1\)
\(=a.1.2.\left(2018-x_0\right)+2019\)
\(\Rightarrow f\left(2021\right)-f\left(2018\right)=a.1.2\left(2021-2018\right)+3\)
\(=6a+3\)
Làm nốt
Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:
\(f\left(2019\right)=2020;f\left(2020\right)=2021\)
CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số
ChO \(\left(x-1\right)^{2018}+y+1=0\)
Tính P\(=\frac{x^{2018}.y^{2019}}{\left(2x+y\right)^{2019+2020}}\)
\(A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\text{×}2020+2\text{×}2019+3\text{×}2018+...+2020\text{×}1}\)
\(A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
Ta có: \(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+2+...+2\right)+\left(3+3+3+...+3\right)+...+\left(2019+2019\right)+2020\)
Trong đó có: 2020 số 1, 2019 số 2, 2018 số 3,..., 2 số 2019, 1 số 2020
Vậy: \(\left(1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+3+...+3\right)+...+2020\)
\(=1\times2020+2\times2019+3\times2018+...+2020\times1\)
\(\Rightarrow A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
\(A=\dfrac{1\times2020+2\times2019+3\times2018+...+2020\times1}{1\times2020+2\times2019+3\times2018+...+2020\times1}=1\)
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}.\) Tính \(A=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+...+f\left(\frac{2018}{2020}\right)+f\left(\frac{2019}{2020}\right).\)
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}.\) Tính \(A=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+...+f\left(\frac{2018}{2020}\right)+f\left(\frac{2019}{2020}\right).\)
Xét \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3+3x+3-6x+3x^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
Thay vào ta tính được:
\(A=\left[f\left(\frac{1}{2020}\right)+f\left(\frac{2019}{2020}\right)\right]+...+\left[f\left(\frac{1009}{2020}\right)+f\left(\frac{1011}{2020}\right)\right]+f\left(\frac{1010}{2020}\right)\)
\(A=1+...+1+f\left(\frac{1010}{2020}\right)\) (với 1009 số 1)
\(A=1009+f\left(\frac{1}{2}\right)=1009+\frac{\left(\frac{1}{2}\right)^3}{1-3\cdot\frac{1}{2}+3\cdot\left(\frac{1}{2}\right)^2}\)
\(A=1009+\frac{1}{2}=\frac{2019}{2}\)
Vậy \(A=\frac{2019}{2}\)
hello ae xin chào
giải phương trình : \(\frac{\sqrt{x-2018}-1}{x-2018}+\frac{\sqrt{y-2019}-1}{y-2019}+\frac{\sqrt{z-2029}-1}{z-2020}=\frac{3}{4}\)
tìm nghiệm nguyên của pt : \(2x^2+4x=19-3y^2\)
cm với mọi số tự nhiên n thì : \(a_n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương
ĐKXĐ: ...
Đặt \(\left(\sqrt{x-2018};\sqrt{y-2019};\sqrt{z-2020}\right)=\left(a;b;c\right)\) \(\Rightarrow a;b;c>0\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4a-4}{a^2}+\frac{4b-4}{b^2}+\frac{4c-4}{c^2}=3\)
\(\Leftrightarrow1-\frac{4a-a}{a^2}+1-\frac{4b-4}{b^2}+1-\frac{4c-4}{c^2}=0\)
\(\Leftrightarrow\frac{a^2-4a+4}{a^2}+\frac{b^2-4b+4}{b^2}+\frac{c^2-4c+4}{c^2}=0\)
\(\Leftrightarrow\left(\frac{a-2}{a}\right)^2+\left(\frac{b-2}{b}\right)^2+\left(\frac{c-2}{c}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2018}=2\\\sqrt{y-2019}=2\\\sqrt{z-2020}=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2022\\y=2023\\z=2024\end{matrix}\right.\)
\(2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)
Do \(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\) \(\Rightarrow y^2\le7\) (1)
Mà \(2\left(x+1\right)^2\) là một số tự nhiên chẵn và 3 là số lẻ
\(\Rightarrow7-y^2\) là một số chẵn \(\Rightarrow y^2\) là một số lẻ (2)
Từ (1); (2) \(\Rightarrow y^2\) là số chính phương lẻ và nhỏ hơn 7
\(\Rightarrow y^2=1\Rightarrow y=\pm1\)
\(\Rightarrow2\left(x+1\right)^2=3\left(7-1\right)=18\)
\(\Rightarrow\left(x+1\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Ta có:
\(a_n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(a_n=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(a_n=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(a_n=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(a_n=\left(n^2+3n+1\right)^2\)
\(\Rightarrow a_n\) là số chính phương với mọi n tự nhiên
Cho các số x, y thoả mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
Chứng minh rằng \(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=-1\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)