1,xác định hằng số a sao cho:
a,x3+ax2-4 chia hết cho x2+4x+4
Để đa thức x 3 + a x 2 - 4 chia hết cho x 2 + 4x + 4 thì giá trị của a là
A. a = -6
B. a = 6
C. a = -3
D. a = 3
Bài 1: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau:
a) A= a4-2a3+3a2-4a+5
b) B= \(\dfrac{x^2+4x-6}{3}\)
c) C= \(\dfrac{4+5\left|1-2x\right|}{7}\)
Bài 2:
a) Tìm a sao cho x4-x3+6x2-x+a chia hết cho đa thức x2-x+5.
b) Xác định hằng số a và b sao cho x4+ax2+b chia hết cho x2-x+1
Bài 3: Tính giá trị của biểu thức: A= x17-12x14+...-12x12+12x-1 với x=11
Xác định hằng số A sao cho
x^3+ax^2-4 chia hết cho x^2+4x+4
Xác định hằng số a sao Chợ x3 + ax2 - 4 chia hết cho x2 + 4x + 4
Gọi thương của phép chia là f(x)
Ta có : \(x^3+ax^2-4=f\left(x\right)\cdot\left(x^2+4x+4\right)\)
\(\Leftrightarrow x^3+ax^2-4=f\left(x\right)\cdot\left(x+2\right)^2\)
Với \(x=-2\), ta có :
\(\left(-2\right)^3+a.\left(-2\right)^2-4=f\left(x\right).0\)
\(\Leftrightarrow-8+4a-4=0\)
\(\Leftrightarrow4a=12\)
\(\Leftrightarrow a=3\)
Vậy a = 3
xác định hằng đẳng số a sao cho:
a, 4x2 -6x + a chia hết cho x-3
b, 2x2 +x+a chia hết cho x+3
c, x3 + ax2 - 4 chia hết cho x2 +4x + 4
a,Để \(4x^2-6x+a=\left(x-3\right)\left(4x+6\right)+\left(a+18\right)⋮\left(x-3\right)\)
\(\Rightarrow x+18=0\Rightarrow x=-18\)
Các câu dưới tương tự bn tự làm nha!
sao lại có (x+3) (4x-6) +(a+18): (x-3)
Xác định số hữu tỉ a, b sao cho:
a) 2x2 + ax - 4 chia hết cho x + 4
b) x4 - 3x3 + 3x2 + ax + b chia hết cho x2 - 3x - 4
c) 3x2 + ax + 27 chia cho x + 5 thì dư 27
d) x3 + ax + b chia cho x + 1 thi dư 7, chia cho x - 3 thì dư 5.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
Xác định hằng số a sao cho :
a, 2x2 + ax + 1 chia cho x-3 dư 4
b,ax5 + 5x4 - 9 chia hết cho x-1
c, x3 + ax2 - 4 chia hết cho x2 + 4x+4
a, Gọi thương phép chia là Q(x) khi đó, ta có:
2x2 + ax +1 = (x-3).Q(x) +4
Với x=3 ta có: 2.32 + 3a +1= 0.Q(x) +4
19+3a = 4
=> 3a= -15
=> a= -5
Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số
Xác định hằng số A sao cho : x^3 + ax^2 - a chia hết cho x^2 + 4x + a
x3 + ax2 - a = (x3 + 4x2 + ax) + ax2 - 4x2 - ax - a = x(x2 + 4x + a) + (a - 4)x2 - ax - a
= x(x2 + 4x + a) + (a - 4)x2 + 4(a - 4)x + a.(a - 4) - 4(a - 4)x - ax - a.(a - 4) - a
= x(x2 + 4x + a) + (a - 4). (x2 + 4x + a) - (5a -16)x - a2 + 3a
= (x + a - 4)(x2 + 4x + a) - (5a -16)x - a2 + 3a
=> x3 + ax2 - a chia cho x2 + 4x + a dư - (5a -16)x - a2 + 3a
Để phép chia là phép chia hết thì - (5a -16)x - a2 + 3a = 0 với mọi x <=> 5a - 16 = 0 và -a2 + 3a = 0
<=> a = 16/5 và a = 0 hoặc a = 3 : Điều này không xảy ra
Vậy không tồn tại a để....
xác định hằng số a, b sao cho x^4+ax^2+b chia hết cho x^2+x+1
Để x4 + ax2 + b chia hết cho x2 + x + 1 thì x4 + ax2 + b khi phân tích phải có nhân tử là x2 + x + 1
Sau khi phân tích thì x4 + ax2 + b có dạng ( x2 + x + 1 )( x2 + cx + d )
=> x4 + ax2 + b = ( x2 + x + 1 )( x2 + cx + d )
<=> x4 + ax2 + b = x4 + cx3 + dx2 + x3 + cx2 + dx + x2 + cx + d
<=> x4 + ax2 + b = x4 + ( c + 1 )x3 + ( c + d + 1 )x2 + ( c + d )x + d
Đồng nhất hệ số ta có : \(\hept{\begin{cases}c+1=0\\c+d+1=a\\c+d=0\end{cases}};d=b\Rightarrow\hept{\begin{cases}a=b=d=1\\c=-1\end{cases}}\)
Vậy a = b = 1
x^4+ax^2+1
= x^4+2x^2+1+ax^2-2x^2
=(x^2+1)^2-x^2+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+(a-1)(x^2+x+1) -(a-1)(x-1).
để x^4+ax^2+1 chia hết cho x^2+x+1
thì số dư =0
<=> (a-1)(x-1) =0
<=> a=1
câu hỏi: xác định a sao cho:
a, 5x3+4x2-6x-a chia hết cho 5x-1
b, x3 + x2-x+a __________ (x+1)2
a) Thực hiện phép chia đa thức 5x3+4x2-6x-a cho 5x - 1 ta được số dư là -a - 1
Để 5x3+4x2-6x-a chia hết cho 5x-1 thì -a - 1 = 0
=> a = -1
b) \(\left(x+1\right)^2=x^2+2x+1\)
Thực hiện phép chia đa thức x3 + x2-x+a cho (x+1)2 ta được số dư là
a + 1
Để x3 + x2-x+a chia hết cho (x+1)2 thì a = -1
P/s: Khi làm bài e nhớ thực hiện phép chia chi tiết vào nehs!