PTĐTTNT:
\(\text{a) }x^8+14x^4+1\)
\(\text{b) }x^8+98x^4+1\)
a) x8 + 14x4 + 1
b) x8 + 98x4 + 1
a) \(x^8+14x^4+1=\left(x^4+1\right)^2+12x^4=\left(x^4+1\right)^2+4x^2\left(x^4+1\right)+4x^4-4x^2\left(x^4+1\right)+8x^4\)
\(=\left(x^4+2x^2+1\right)^2-4x^2\left(x^4-2x^2+1\right)=\left(x^4+2x^2+1\right)^2-\left(2x\left(x^2-1\right)\right)^2\)
\(=\left(x^4-2x^3+2x^2+2x+1\right)\left(x^4+2x^3+2x^2-2x+1\right)\)
Phân tích đa thức thành nhân tử:
a)\(x^8+14x^4+1\)
b) \(x^8+98x^4+1\)
Ta có : \(x^8+14x^4+1\)
\(=x^8+2.x^4.7+1\)
\(=x^8+2.x^4.7+49-48\)
\(=\left(x^4+7\right)^2-48\)
\(=\left(x^4+7-\sqrt{48}\right)\left(x^4+7+\sqrt{48}\right)\)
a/\(=\left(x^4+1\right)^2+12x^4=\left(x^4+1\right)^2+4x^2\left(x^4+1\right)+4x^4-4x^2\left(x^4+1\right)+8x^4\)
\(=\left(x^4+1+2x^2\right)^2-4x^2\left(x^4+1-2x^2\right)=\left(x^4+2x^2+1\right)-\left(2x^3-2x\right)^2\)
\(=\left(x^4+2x^3+2x^2-2x+1\right)\left(x^4-2x^3+2x^2+2x+1\right)\)
b/\(=\left(x^4+1\right)^2+96x^4=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+1+8x^2\right)^2-16x^2\left(x^4+1-2x^2\right)=\left(x^4+8x^2+1\right)-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)
Dùng phương pháp hệ số bất định :
a) 4x4 + 4x3 + 5x2 + 2x + 1 ;
b) x4 - 7x3 + 14x2 - 7x + 1 ;
c) x4 - 8x + 63 ;
d) (x + 1)4 + (x2 + x + 1)2.
2. a) x8 + 14x4 + 1 ;
b) x8 + 98x4 + 1.
PTĐTTNT:
\(\text{a) }a^{10}+a^5+1\)
\(\text{b) }x^5-x^4-1\)
a) = a^10 - a + a^5 - a^2 + a^2 + a + 1
= a(a^9 - 1) + a^2(a^3 - 1) + (a^2 + a + 1)
= a.(a^3-1)(a^6 + a^3 + 1) + a^2(a-1)(a^2+a+1) + (a^2 + a + 1)
= a.(a-1)(a^2 + a + 1)(a^6 + a^3 + 1) + a^2(a-1)(a^2+a+1) + (a^2 + a + 1)
= (a^2 + a + 1)[(a.(a-1)(a^6 + a^3 + 1) + a^2 + 1]
b) x^5 - x^4 - 1 = x^5 - x^4 + x^3 - x^3 + x^2 - x - x^2 + x - 1
= x^3(x^2 - x + 1) - x(x^2 - x + 1) - (x^2 - x + 1)
= (x^2 - x + 1)(x^3 - x - 1)
a) \(a^{10}+a^5+1\)
\(=\left(a^{10}-a^9+a^7-a^6+a^5-a^3+a^2\right)\)
\(+\left(a^9-a^8+a^6-a^5+a^4-a^2+a\right)\)
\(+\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(=a^2\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(+a\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(+\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(=\left(a^2+a+1\right)\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
b) \(x^5-x^4-1\)
\(=\left(x^5-x^3-x^2\right)-\left(x^4-x^2-x\right)+\left(x^3-x-1\right)\)
\(=x^2\left(x^3-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
phân tích thành nhân tử : a) x8 +14x4 +1 b) x8 + 98x4 +1
x8 + 14x4 + 1
= [(x4)2 + 2.7.x2 + 49] - 48
=(x4 + 7)2 - (\(\sqrt{48}\))2
=(x4 + 7 + căn482).(x4 + 7 - căn482)
Phân tích thành nhân tử:
A) \(a^6+a^4+a^2b^2+b^4-b^6\)
B) \(x^3+3xy+y^3-1\)
C) \(x^8+14x^4+1\)
D) \(x^8+98x^4+1\)
Mình đang cần lời giải (chi tiết). Cảm ơn.
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Tìm số thập phân x biết:
a) \(^{\text{x}}\)\(^{ }\)+ \(\dfrac{3}{4}\)= \(\dfrac{4}{5}\) | b) \(^{\text{x}}\) - \(\dfrac{1}{2}\) = \(\dfrac{5}{8}\) | c) \(^{\text{x}}\) x \(\dfrac{5}{6}\) = \(\dfrac{4}{5}\) | d)\(^{\text{x}}\) : \(\dfrac{5}{8}\) = \(\dfrac{1}{25}\) |
a) \(x=0,05\)
b) \(x=1,125\)
c) \(x=0,96\)
d) \(x=0,025\)
Bạn tự làm đi dễ mà . Cố mag vận động đầu óc đừng copy làm bài nữa khó lắm mới hỏi thôi
Phân tích đa thức thành nhân tử:
a.x^8+98x^4+1=A (Đặt y=x^2)
b.P(x,y)=12x^2+5x-12y^2+12y-10xy-3
c.x^4+6x^3+11x^2+6x+1
d.3x^2-22xy+7y^2-4x+8y+1
e.x^4-8x+63
h.x^8+14x^4+1
m.(a+b+c)^3-a^3-b^3-c^3
n.(x+y+z)^3-4(x^3+y^3+z^3)-12xyz