PTĐTTNT
\(\left(x^2+3x-4\right)\left(x^2+x-6\right)-24\)
PTĐTTNT:
\(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)
\(\text{mik đoán bài này là đặt ẩn phụ mà mik k biết làm }\)
\(=4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)-3x^2\)
\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\) (1)
Đặt: \(x^2+60=t\)
\(4\left(t+17x\right)\left(t+16x\right)-3x^2\)
\(=4t^2+132tx+1085x^2\)
\(=\left(4t^2+70xt\right)+\left(62xt+1085t^2\right)\)
\(=\left(2t+31x\right)\left(2t+35x\right)\)
\(=\left(2\left(x^2+60\right)+31x\right)\left(2\left(x^2+60\right)+35x\right)\)
\(=\left(2x+15\right)\left(2x+8\right)\)\(\left(2x^2+35x+120\right)\)
có thiệt phát không biết làm không
1 phan tich
A=(x+1)(x+2)(x+3)(x+4)-24
B=\(\left(x^2+3x+2\right)\left(x^2+7x+120-24\right)\)
C=\(\left(x-2\right)\left(x-4\right)\left(x+6\right)\left(x-8\right)+16\)
D=\(\left(x^3+3x+2\right)\left(x^2+7x+12\right)-11\)
A=(x+1)(x+2)(x+3)(x+4)-24
=(x2+5x+4)(x2+5x+6)-24
Đặt t=(x2+5x+4) ta có:
t(t+2)-24=t2+6t-2t-24
=t(t+6)-4(t+6)
=(t-4)(t+6).Thay vào ta đc:
(x2+5x+4-4)(x2+5x+4+6)=(x2+5x)(x2+5x+10)
=x(x+5)(x2+5x+10)
B=(x2+3x+2)(x2+7x+120-24)
=(x2+3x+2)(x2+7x+96)
=(x2+2x+x+2)(x2+7x+96)
=[x(x+2)+(x+2)](x2+7x+96)
=(x+1)(x+2)(x2+7x+96)
C và D bn cx lm tương tự
Giải các phương trình sau:
a \(\left(x+2\right)\left(x+\text{4}\right)\left(x+6\right)\left(x+8\right)+16=0\)
b \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
c \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
d \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
PTĐTTNT:
\(\text{a) }\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(\text{b) }2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
(x−y+z)2+(z−y)2+2(x−y+z)(y−z)(x−y+z)2+(z−y)2+2(x−y+z)(y−z)
=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)
=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]
=(x−y+z)x+(z−y)(z−y−x+y−z)=(x−y+z)x+(z−y)(z−y−x+y−z)
=x2−xy+xz+(z−y)(−x)=x2−xy+xz+(z−y)(−x)
=x2−xy+xz−xz+xy=x2−xy+xz−xz+xy
=x2
PTĐTTNT
\(\text{a) }\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+xz\right)^2\)
\(\text{b) }2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
\(x;y;z\rightarrow q;h;p\)
\(=\left(q^2+h^2+p^2\right)\left(q^2+h^2+p^2+2qh+2hp+2qp\right)+\left(qh+hp+pq\right)^2\)
\(Dat:\hept{\begin{cases}q^2+h^2+p^2=f\\qh+hp+qp=g\end{cases}}\Rightarrow\left(p^2+h^2+q^2\right)\left(p+q+h\right)^2+\left(qh+pq+ph\right)^2\)
\(=f\left(f+2g\right)+g^2=f^2+2fg+g^2=\left(f+g\right)^2=\left(q^2+h^2+p^2+qh+hp+pq\right)^2\)
shitbo Cho đệ sửa lại bài SP chứ bài SP dài quá ạ:p
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2+2xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
Đặt \(x^2+y^2+z^2=a;xy+yz+zx=b\)
\(\Rightarrow a\left(a+2b\right)+b^2=a^2+2ab+b^2=\left(a+b\right)^2=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)
Ta có:\(2a-b^2-2bc^2+c^4\)
\(=2a-2b^2+b^2-2bc^2+c^4\)
\(=2\left(a-b^2\right)+\left(b-c^2\right)^2\)
Lại có:
\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right);b-c^2=-2\left(xy+yz+zx\right)\)( Nhác quá hơi tắt xíu )
Thay vào ta được:
\(2\left(a-b^2\right)+\left(b-c^2\right)^2\)
\(=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\right)\)
\(=4xyz\left(x+y+z\right)\)
a)\(\left(2-3x\right)\left(x^2+2x+3\right)=0\)
b)\(3x-2=5+3x\)
c)\(4x+5=5+4x\)
d)\(x^2-5x=6\)
e)\(\frac{2\left(x-3\right)^2}{3}=\frac{3x^2}{2}\)
f)\(\left(|x+5|\right)^2=\left(|3x-2|\right)^2\)
g)\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=24\)
\(a.\left(2-3x\right)\left(x^2+2x+3\right)=0.\)
\(\left(2-3x\right)=0\)
\(\left(x^2+2x+3\right)=0\)
\(TH1:2-3x=0\Leftrightarrow x=\frac{-2}{-3}\)
\(TH2:x^2+2x+3=0\Leftrightarrow\left(x^2+2x+1\right)+3\Leftrightarrow\left(x+1\right)^2+3>0\)
b) \(3x-3x=5+2\) ( vô nghiệm)
c) vô nghiệm
d-\(x^2-5x-6=0\Leftrightarrow\left(x^2-x\right)+\left(6x-6\right)\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
vậy ...
x=1
x=-6
E) \(\frac{2\left(x-3\right)^2}{3}=\frac{3x^2}{2}\) quy đồng khử mẫu ta được
\(4\left(x-3\right)^2-9x^2=0\Leftrightarrow4\left(x-3\right)^2-\frac{4.1.9x^2}{4}\) rút 4 ta được
\(4\left\{\left(x-3\right)^2-\frac{9x^2}{4}\right\}=0\Leftrightarrow4\left\{\left(x-3\right)^2-\left(\frac{3}{2}x\right)^2\right\}\Leftrightarrow4\left(x-3+\frac{3}{2}x\right)\left(x-3-\frac{3}{2}x\right)=0\) ( hằng đẳng thức số 3 )
tích = 0
vậy ....
F) trị tuyệt đối + bình phương của 1 số thực luôn lớn hơn hoặc = 0( định lí Pain)
phá trị tuyệt đối ta được
\(\left(x+5\right)^2-\left(3x-2\right)^2=0\)
\(\left(x+5-3x-2\right)\left(x+5+3x-2\right)=0\) ( hẳng đẳng thức số 3 )
tích = 0 suy ra 2 TH vậy .....
g) câu G bạn lên coccoc math bạn ghi là nó ra kết quả phân tích thành nhân tử chứ làm = tay vừa dài vừa hại não :)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24=0\)
\(x\left(x-5\right)x\left(x^2-5x+10\right)=0\) ( coccoc math)
\(\left(x^2-5x+10\right)=0\Leftrightarrow\left(x^2-\frac{2x.5}{2}+\left(\frac{5}{2}\right)^2\right)+10-\frac{25}{4}=0\) ( 10-25/4) = 15/4
\(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\) ( vô nghiệm)
vậy....
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)