Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thành Nam
Xem chi tiết
Raiden Shogun
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2021 lúc 0:36

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

Trinh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2022 lúc 20:07

a: \(\widehat{P}=180^0-50^0-64^0=66^0>\widehat{N}\)

nên MN>MP

b: Xét ΔMNP có MN>MP

mà HN là hình chiếu của MN trên NP

và HP là hình chiếu của MP trên NP

nên HN>HP

Nguyễn Khánh Ngọc
Xem chi tiết
Đào Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 20:11

b: \(\widehat{NMH}+\widehat{N}=90^0\)

\(\widehat{P}+\widehat{N}=90^0\)

Do đó: \(\widehat{NMH}=\widehat{P}\)

Name
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
Tăng Hoàng Quân
Xem chi tiết
Uyên trần
18 tháng 4 2021 lúc 15:12

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

Nguyễn Hải Âu
9 tháng 5 2023 lúc 5:10

Mình nghĩ MK nên áp dụng ta lét nhé

7,2/x = 12/9,6-x

<=>7,2 . (9.6-x) = 12.x

<=>69,12 - 7,2x = 12x

<=>69,12           = 12x + 7,2x

<=> 69,12          = 19, 2

<=> x                 = 69,12 : 19,2 = 3,6
Vậy MK bằng 3,6cm
(mình ko chắc đúng ko nhưng theo mình là vậy)

6C - Triệu Như Hoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 3 2023 lúc 14:35

a: Xet ΔKNP vuông tại K và ΔHPN vuông tại H có

NP chung

góc KNP=góc HPN

=>ΔKNP=ΔHPN

b: ΔKNP=ΔHPN

=>góc ENP=góc EPN

=>ΔENP cân tại E

c: Xét ΔMKE vuông tại K và ΔMHE vuông tại H có

ME chung

MK=MH

=>ΔMKE=ΔMHE

=>góc KME=góc HME

=>ME là phân giác của góc NMP