Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Như Ngọc
Xem chi tiết
Nguyễn Như Ngọc
3 tháng 9 2016 lúc 9:46

giúp mình với

Nhanh mình tick cho

 

grak béo
Xem chi tiết
grak béo
Xem chi tiết
Hoàng Trần Đình Tuấn
Xem chi tiết
Uchiha Nguyễn
9 tháng 12 2015 lúc 9:22

Bạn có thể vào đây tham khảo Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Nhấn vào dòng chữ màu xanh 

oOo Min min oOo
Xem chi tiết
Nguyễn Đình Trung
Xem chi tiết
Nguyễn Hoàng Tiến
8 tháng 5 2016 lúc 10:59

Mình làm bài 2 nhé:

Ta có: \(\frac{1}{2^2}<\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}<\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)

....

\(\frac{1}{50^2}<\frac{1}{50\times51}=\frac{1}{50}-\frac{1}{51}\)

Tổng các vế ta sẽ có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}=\frac{49}{102}<1\)

Tiểu Đào
Xem chi tiết
Wakamura Sachie
Xem chi tiết
Lê Mạnh Châu
2 tháng 4 2017 lúc 9:40

bạn phân tích thì ra

Dương Đức Hiệp
2 tháng 4 2017 lúc 9:51

Trừ 1 đi thì ta chỉ cần chứng minh từ \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}\)                                                                                                         \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)                                                                                                                                                       \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)      ....... cứ nhu vậy cho đến \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vì \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

 Vậy S < 2

Five centimeters per sec...
Xem chi tiết
Hà Phương Trần Thị
29 tháng 3 2017 lúc 19:42

sửa đề : S < 1

\(s< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+..................+\frac{1}{9.10}\)

\(\Leftrightarrow S< 1-\frac{1}{10}\)

vậy S < 1