Cho Tâm giác ABC , có AB=AC , kẻ BE vuông góc AC tại E , CF vuông góc với AB tại F , BE cắt CF tại H . Chứng Minh : Tâm giác ABE=ACF
Tam giác HBC Cân tai H
cho tam giác ABC có ba góc nhọn (AB<AC). Kẻ BE vuông với AC tại E và CF vuông với AB tại F ( E thuộc AC, F thuộc AB), BE cắt CF tại H. CHỨNG minh rằng :
a) Góc AEF= góc ABC
b) HA+HB+HC>2/3( AB + BC +CA)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
Do đó: ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ABC
b: Kẻ HM//AB(M thuộc AC)
HN//AC(N thuộc AB)
Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
=>AM=HN; AN=HM
ΔAHM có AH<AM+MH
=>AH<AM+AN
HN//AC
mà BH vuông góc AC
nên HB vuông góc HN
ΔHBN vuông tại H
=>HB<BN
HM//AB
CH vuông góc AB
Do đó: HC vuông góc HM
=>ΔHCM vuông tại H
=>HC<MC
AH<AM+AN
HB<BN
HC<MC
=>HA+HB+HC<AM+AN+BN+MC=AC+AB
Chứng minh tương tự, ta được:
HA+HB+HC<AB+BC và HA+HB+HC<AC+BC
=>3*(HA+HB+HC)<2(BA+BC+AC)
=>HA+HB+HC<2/3*(BA+BC+AC)
Cho tam giác ABC có AB = AC. Kẻ BE Vuông góc với AC tại E, CF vuông góc với AV tại F, BE cắt CF tại I. Chứng minh rằng AE = AF
Lời giải:
Xét tam giác $ABE$ và $ACF$ có:
$\widehat{A}$ chung
$AB=AC$ (gt)
$\widehat{AEB}=\widehat{AFC}=90^0$
$\Rightarrow \triangle ABE=\triangle ACF$ (ch-gn)
$\Rightarrow AE=AF$
Cho tam giác ABC cân tại C (AB < AC). Kẻ ba đường cao AD, BE, CF cắt nhau tại H ( D thuộc BC, E thuộc AC, F thuộc AB). Kẻ DM vuông góc CF tại M, DK vuông góc với AC tại K. Gọi N là giao điểm của EF với tia CB. Chứng minh: CE.CN = FE.FN + CF^2
Cho tam giác ABC cân tại C (AB < AC). Kẻ ba đường cao AD, BE, CF cắt nhau tại H ( D thuộc BC, E thuộc AC, F thuộc AB). Kẻ DM vuông góc CF tại M, DK vuông góc với AC tại K. Gọi N là giao điểm của EF với tia CB. Chứng minh: CE.CN = FE.FN + CF^2
Cho tam giác ABC nhọn (AB>AC). Vẽ đường tròn đường kính BC, cắt AB tại F, cắt AC tại E.
a/ CMR CF vuông góc AB tại F.
b/ CMR BE vuông góc AC tại E.
c/ CF cắt BE tại H. CMR 4 điểm A,E,H,F thuộc 1 đường tròn xác định tâm K.
Cho tam giác ABC cân tại C (AB < AC). Kẻ ba đường cao AD, BE, CF cắt nhau tại H ( D thuộc BC, E thuộc AC, F thuộc AB).
1. Chứng minh: AE.AC = AB^2/2
2. Kẻ DM vuông góc CF tại M, DK vuông góc với AC tại K. Chứng minh: MK // FE
3. Tính giá trị của tổng AH/AD + BH/BE + CH/CF
4. Gọi N là giao điểm của EF với tia CB. Chứng minh: CE.CN = FE.FN + CF^2
Các bạn giúp mình ý 4 với ạ
Cho tam giác ABC vuông ở A có AB = 12 cm, AC = 16cm. Kẻ đường thẳng vuông góc với BC tại B cắt cạnh AC kéo dài tại E.
c) Gọi CF là tia phân giác của góc BCE (F BE). Kẻ BH
vuông góc với CF tại H. Chứng minh : góc CEF = góc
CHA
d) Tính diện tích tứ giác EFMC
Câu 2: Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB E AC (FAB)
a) Chứng minh ABE ACF.
b) Gọi I là giao điểm của BE và CF. Chứng minh BIC cân
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
FC=EB
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{FCB}=\widehat{EBC}\)
=>ΔIBC cân tại I
Cho tam giác ABC vuông cân tại A . kẻ AH vuông góc với BC tại H . K nằm giữa H và C .a, tam giác AHC là tam giác gì ? so sánh AC và AK b, kẻ BE vuông góc với AK tại E . CF vuông góc với AK tại F chứng minh tam giác ABE = tam giác CAF c, Gọi I là giao điểm của AH và CF chung minh IK // AB
a)vì ABC là tam giác vuông tại A
và AH vuông góc vs BC,dồng thời là đường cao,là đg trung tuyến trong tam giác
nên H=90độ
tam giác AHC vuông tại H