Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duyên Lương
Xem chi tiết
nhinhanhnhen
Xem chi tiết
nguyễn thị hạnh
Xem chi tiết
chelsea
20 tháng 12 2016 lúc 21:43

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2=2ab+2bc+2ac

<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0

<=>(a-b)^2+(b-c)^2+(c-a)^2=0

=>a-b=b-c=c-a=0

=>a=b;b=c;c=a

=>a=b=c

=>tam giác abc là tam giác đều

ONLINE SWORD ART
Xem chi tiết
lê thành đạt
18 tháng 4 2022 lúc 21:08

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

lê thành đạt
18 tháng 4 2022 lúc 21:08

đúng trẻ trâu

Thảo Đỗ Phương
Xem chi tiết
Duc nguyen tri
30 tháng 3 2017 lúc 21:15

nếu là \(a^2+b^2+c^2< 2\) thi minh lam dc                                    

nguyễn văn nhật nam
Xem chi tiết
nghĩa
Xem chi tiết
Kiệt Nguyễn
24 tháng 11 2019 lúc 10:42

a,b,c là độ dài 3 cạnh của 1 tam giác nên:

\(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< bc+ab\\c^2< ac+bc\end{cases}}\)

Cộng từng vế của các BĐT trên:

\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(< 4\left(ab+bc+ac\right)\)

\(\Rightarrow\left(a+b+c\right)^2\)\(< 4\left(ab+bc+ac\right)\)(đpcm)

Khách vãng lai đã xóa
PHẠM THANH LAM
Xem chi tiết
Nguyễn Công Thái Bảo
26 tháng 3 2020 lúc 10:37

Ta có:

a<b+ca<b+c 
--> a+a<a+b+ca+a<a+b+c 
--> 2a<22a<2 
--> a<1a<1 

Tương tự ta có : b<1,c<1b<1,c<1 

Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0 
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0 
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0 
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc 

Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca 
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2 
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm

Khách vãng lai đã xóa
Bùi Thế Quang
Xem chi tiết