Cho a,b,c là độ dài 3 cạnh của 1 tam giác và a+b+c=2 . Chứng minh:
\(ab+bc+ca>abc+1\)
Cho tam giác ABC có độ dài ba cạnh là a, b, c và ( a + b + c )^2 = 3( ab + bc + ca ). Chứng minh tam giác ABC đều.
cho a,b,c là độ dài 3 cạnh của 1 tam giác và abc=1. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge ab+bc+ca\)
cho tam giác ABC có độ dài ba cạnh là a,b,c sao cho a^2+b^2+c^2 = ab+bc+ca . chứng minh rằng tam giác ABC là tam giác đều
a^2+b^2+c^2=ab+bc+ac
=>2a^2+2b^2+2c^2=2ab+2bc+2ac
<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
<=>(a-b)^2+(b-c)^2+(c-a)^2=0
=>a-b=b-c=c-a=0
=>a=b;b=c;c=a
=>a=b=c
=>tam giác abc là tam giác đều
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(ab+bc+ca\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì
Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng \(^{a^2+b^2+c< 2}\) (ab+bc+ca)
nếu là \(a^2+b^2+c^2< 2\) thi minh lam dc
cho tam giác abc có bc=a ac=b ab=c
a/chứng minh rằng nếu góc a = 2 lần góc b thì a^2=b^2+bc và ngược lại
b/tính độ dài các cạnh của tam giác abc thỏa điều kiện trên biết độ dài ba cạnh tam giác là 3 số tự nhiên liên tiếp
cho a ,b ,c là độ dài 3 cạnh tam giác . Chứng minh (a + b + c)^2 < 4(ab+ bc + ca)
a,b,c là độ dài 3 cạnh của 1 tam giác nên:
\(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< bc+ab\\c^2< ac+bc\end{cases}}\)
Cộng từng vế của các BĐT trên:
\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(< 4\left(ab+bc+ac\right)\)
\(\Rightarrow\left(a+b+c\right)^2\)\(< 4\left(ab+bc+ac\right)\)(đpcm)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác có chu vi bằng 2.Chứng minh rằng 1+abc<ab+ac+bc
Ta có:
a<b+ca<b+c
--> a+a<a+b+ca+a<a+b+c
--> 2a<22a<2
--> a<1a<1
Tương tự ta có : b<1,c<1b<1,c<1
Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc
Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm
Cho a,b,c là độ dài 3 cạnh của 1 tam giác.
Chứng minh rằng: ab +bc+ca nhỏ hơn hoặc bằng tổng các bình phương của a,b,c nhỏ hơn 2(a+b+c0