cho a,b,c là độ dài 3 cạnh của 1 tam giác và abc=1. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge ab+bc+ca\)
Cho a,b,c là độ dài 3 cạnh của tam giác và a + b + c = 2.
CM: 1 < ab + bc + ca - abc ≤ 1 + \(\frac{1}{27}\)
Cho tam giác ABC nhọn, độ dài các cạnh BC, CA, AB lần lượt là a, b, c. Chứng minh rằng:
a sin A = b sin B = c sin C
Cho a,b,c là độ dài 3 cạnh của một tam giác . Chứng minh \(a^2+b^2+c^2\le2\left(ab+bc+ca\right)\)
Cho tam giác ABC ngoại tiếp đường tròn (I). Các cạnh AB, BC, CA tiếp xúc đường tròn (I) lần lượt tại D, E, F. Đặt BC = a, CA = b, AB = c
a, Chứng minh AD =
b
+
c
-
a
2
b, Gọi r là bán kính của (I). Chứng minh S A B C = p.r, trong đó p là nửa chu vi tam giác ABC
c, Gọi M là giao điểm của đoạn thẳng AI với (I). Tính độ dài đoạn thẳng BM theo a, b, c
Chứng minh rằng nếu a,b,c, là chiều dài 3 cạnh của 1 tam giác thì:
ab+bc>= a^2+b^2+c^2<2(ab+bc+ca)
cho tam giác abc vuông tại a. gọi a,b,c lần lượt là chiều dài các cạnh bc, ca,ab. chứng minh Sabc=1/4(a+b+c)(b+c-a)
Cho tam giác ABC có chu vi 2p ngoại tiếp (I;r). Gọi a,b,c; ha,hb,hc thứ tự là độ dài và chiều cao tương ứng cạnh BC,CA,AB. Chứng minh:
a) 1/ha + 1/hb + 1/hc = 1/r
b) ha + hb + hc =2pr( 1/a + 1/b + 1/c )
Cho tam giác ABC có chu vi 2p ngoại tiếp (I;r). Gọi a,b,c; ha,hb,hc thứ tự là độ dài và chiều cao tương ứng cạnh BC,CA,AB. Chứng minh:
a) 1/ha + 1/hb + 1/hc = 1/r
b) ha + hb + hc =2pr( 1/a + 1/b + 1/c )