1/2.9+1/9.7+1/7.19+.....+1/252.509
giải jup mình với
1/2.9+1/9.7+1/7.19+..........+1/252.509 = ?
so sánh A VỚI 1/10
A=1/2.9 + 1/9.7 + 1/7.19 + ... + 1/252.509
Bạn tham khảo tại đây nhé: Câu hỏi của Akane Hoshino.
Chúc bạn học tốt!
Tính A:
\(\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
Đặt \(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)
\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(\Leftrightarrow A=\frac{2}{5}.\frac{505}{2036}\)
\(\Leftrightarrow A=\frac{101}{1018}\)
~ Hok tốt ~
#)Giải :
\(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
\(A=\frac{2}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)
\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}\times\frac{505}{2036}\)
\(A=\frac{101}{1018}\)
T có 1 câu hỏi ạ
So sánh A=1/2.9+1/9.7+1/7.19+...+1/252.509 và B=1/10
\(A=\frac{1}{7}\left[\frac{1}{2}-\frac{1}{9}+...+\frac{1}{252}-\frac{1}{509}\right]\)
\(A=\frac{1}{7}.\left[\frac{1}{2}-\frac{1}{509}\right]\)
\(A=\frac{1}{7}.\left[\frac{507}{1018}\right]=\frac{507}{7126}\)
mk nghĩ là vậy đó, ủng hộ mk nha
A=1/2.9+1/9.7+1/7.19+...+1/252.509
mình cần gấp ngày mai rồi. giúp mình với nha
Ta có:
\(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
\(A=\frac{2}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{1}{504.509}\right)\)
\(A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}.\frac{505}{2036}\)
\(A=\frac{101}{1018}.\)
Vậy \(A=\frac{101}{1018}.\)
Chúc bạn học tốt!
S=\(\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
bác nào làm được bài này ko giúp em với
trời
anh ơi anh anh dẹp cho em nhờ
Tính:
A=1/2.9 + 1/9.7 + 1/7.19 + ... + 1/252.509
B=5/1.4 + 29/4.7 + 71/7.10 + 10301/100.103
\(A=\frac{2}{4.9}+\frac{2}{9.14}+\frac{2}{14.19}+...+\frac{2}{504.509}\)
\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)=...\)
\(B=\frac{1.4+1}{1.4}+\frac{4.7+1}{4.7}+\frac{7.10+1}{7.10}+...+\frac{100.103+1}{100.103}\)
\(B=1+\frac{1}{1.4}+1+\frac{1}{4.7}+...+1+\frac{1}{100.103}\)
\(B=34+\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=34+\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=34+\frac{1}{3}\left(1-\frac{1}{103}\right)=...\)
tính \(y=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
Tính
a) A= 1/2.9 + 1/9.7 + 1/7.19 +....+ 1/252.509
b) B= 1/10.9 + 1/18.13 + 1/26.17+.... + 1/802.405
Nhanh nhaaa iuuu
a)Ta có:
A= 1/2.9 + 1/9.7 +...+1/252.509
= 2/5.(5/4.9 + 5/9.14 + 5/14.19 +...+ 1/504.509)
= 2/5.(1/4 - 1/9 + 1/9 - 1/14 + 1/14 - 1/19 +...+ 1/504 - 1/509)
= 2/5.(1/4 - 1/509)
= 101/1018
Vậy A = 101/1018
b)Ta có:
B= 1/10.9 +1/18.13 + 1/26.17 +...+ 1/802.405)
= 1/4.(8/10.18 + 8/18.26 + 8/26.34 +...+ 8/802.810)
= 1/4.(1/10 - 1/18 + 1/18 - 1/26 + 1/26 - 1/34 +...+ 1/802 - 1/810)
= 1/4.(1/10 - 1/810)
= 2/81
Vậy B= 2/81
Tk mình nha!!!