9^(x+1)-5.3^2x=72
Tìm x
a) \(9^{x+1}-5.3^{2x}=324\)
b) \(3.5^{2x+1}-3.25^x=300\)
c) \(16^x:4^x=16\)
d) \(2^{-1}.2^x+4.2^x=72\)
b) 3.[52x+1 - (52)x] = 3.100
3( 52x+1-52x) = 3.100
-> 52x+1-52x = 100
mà 53-52= 100
-> 52x+1-52x = 53-52
Vậy x = 1
c) (42)x : 4x = 42
<=>42x-x =42
<=> 4x = 42
-> x=2
d) 2x( 0,5 +4) = 72
2x. 4,5 = 72
2x = 72:4,5 = 16
2x = 24 = 16
-> x= 4
Tìm x
a) \(9^{x+1}-5.3^{2x}=324\)
b) \(3.5^{2x+1}-3.25^x=300\)
c) \(16^x:4^x=16\)
d) \(2^{-1}.2^x+4.2^x=72\)
3^x-1+5.3^x-1=72
\(\Leftrightarrow3^x\cdot\dfrac{1}{3}+5\cdot3^x\cdot\dfrac{1}{3}=72\)
\(\Leftrightarrow3^x\cdot2=72\)
\(\Leftrightarrow3^x=36\)
hay \(x\in\varnothing\)
3^x-1+5.3^x-1=72
3^x-1+5.3^x-1=72
\(9^{x+1}-5.3^{2x}=324\)
\(9^{x+1}-5.3^{2x}=324\)
\(\Rightarrow9^x.9-5.9^x=324\)
\(\Rightarrow9^x\left(9-5\right)=324\)
\(\Rightarrow9^x.4=324\)
\(\Rightarrow9^x=81\)
\(\Rightarrow9^x=9^2\)
vậy x=2
\(\Rightarrow x=2\)
\(9^{x+1}-5.3^{2x}=324\)
\(9^x.9-5.9^x=324\)
\(9^x.\left(9-5\right)=324\)
\(9^x.4=324\)
\(9^x=81=9^2\)
\(\Rightarrow x=2\)
Tìm x
9x+1+5.32x=324
\(9^{x+1}+5.3^{2x}=324\)
\(9^x.9+5.\left(3^2\right)^x=324\)
\(9^x.9+5.9^x=324\)
\(9^x.\left(5+9\right)=324\)
\(9^x.14=324\)
\(9^x=\frac{324}{14}\)
\(\Rightarrow x\in\varnothing\)
Tìm x biết:
a) 5^x+1 - 2.5^x = 75.
b)9^x+1 - 5.3^2x = 324.
a) 5x + 1 - 2.5x = 75
<=> 5x.5 - 2.5x = 75
<=> 5x.3 = 75
<=> 5x = 25
<=> 5x = 52
<=> x = 2
Vậy x = 2
b) 9x + 1 - 5.32x = 324
<=> (32)x + 1 - 5.32x = 324
<=> 32x + 2 - 5.32x = 324
<=> 32x.32 - 5.32x = 324
<=> 32x . 4 = 324
<=> 32x = 81
<=> 32x = 34
<=> 2x = 4
<=> x = 2
Vậy x = 2
Tìm số tự nhiên x biết: 9x+1 - 5.32x = 324