cho tam giác ABC cân tại A. GỌi BN,CM lần lượt là các đường cao(M thuộc AB,N thuộc AC)
a/ CMR MN//BC
b/cho AB=5cm,BC=6cm.tính độ dài MN
cho tam giác ABC cân tại A gọi BN,CM lần lượt là các đường cao (M thuộc AB,N thuộc AC)
a/ chứng minh rằng MN//BC
b/cho AB =5cm,BC=6cm.tính độ dài MN
Bài 1: Cho tam giác ABC cân tại A. Lấy D, E thuộc BC sao cho BD = CF. CMR: tam giác ABC cân tại A.
Bài 2: Tam giác ABC cân tại A. Lấy M thuộc AB, N thuộc AC sao cho AM = AN.
a) CMR: MN//BC.
b) Cho CM cắt BN tại I. CMR: IB = IC.
Bài 3: Tam giác ABC cân tại A. Lấy M thuộc BC. Vẽ MK//AB (K thuộc AC). CMR: MK = KC.
cho tam giác ABC cân tại A. Gọi M,N thuộc AB và AC sao cho AM=AN
a) CMR: MN//BC
b) BN cắt CN tại O. CM: tam giác OBC cân
Cho tam giác ABC có AB < AC. Lấy M thuộc AB, N thuộc AC sao cho BM = CN. Gọi I, K lần lượt là trung điểm của MN và BC. Đường thẳng IK cắt AB, AC tại E, F. CM: Tam giác AEF cân.
Cho tam giác ABC (AB < AC); BC = 16cm. Hai đường trung tuyến BN, CM cắt nhau tại O (M thuộc AB, N thuộc AC).
a) Tính độ dài MN. Tứ giác MNCB là hình gì? Vì sao?
b) Trên OB và OC lần lượt lấy điểm I, K sao cho I là trung điểm của OB, K là trung điểm của OC. Chứng minh: tứ giác MNKI là hình bình hành
c) Lấy điểm P đối xứng với điểm O qua M, Điểm Q đối xứng với O qua điểm N. Chứng minh: PQ = BC.
(CẦN LỜI GIẢI CHI TIẾT VÀ HÌNH VẼ CHÍNH XÁC)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)(1)
hay BMNC là hình thang
b: Xét ΔOBC có
I là trung điểm của OB
K là trung điểm của OC
Do đó: IK là đường trung bình của ΔOBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//IK và MN=IK
hay MNKI là hình bình hành
Cho tam giác ABC cân tại A . Vẽ trung tuyến AD ( D thuộc BC ) và DE , DF lần lượt cuông góc với AB , AC . CM :
a. Tam giác AED = tam giác AFD .
b. Các đường thẳng DF và AB cắt nhau tại M , các đường thẳng DE và AC cắt nhau tại N . CM : tam giác AMN cân .
c. MN // BC .
d. Cho AC = 5cm , BC = 8cm . Vẽ trung tuyến CK . Tính CK .
Cho tam giác ABC có góc A = 45 độ. Gọi M và n lần lượt là chân đường cao kẻ từ B và C của tam giác ABC ( M thuộc AC, N thuộc AB).
a) Tính tỉ số \(\frac{MN}{BC}\)
b) Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC. CMR: OA vuông góc với MN.
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Gọi M và N lần lượt là hình chiếu của H trên AB và AC.
Qua A kẻ đường thẳng vuông góc với MN cắt BC tại K . CM K là trung điểm của BC. (chỉ ý này thôi ạ)
--------------
(Các ý trước:
a) Giả sử HB = 3, 2 cm , HC = 7,2cm . Tính HA , AC và góc B ; góc C
b) Chứng minh: AM.AB = AN.AC và HB.HC = AM.MB + AN.NC
Cho tam giác ABC vuông cân tại A ; BC = 2a. Gọi M là trung điểm của AC ; N thuộc BC sao cho BN = 2CN. Gọi P,Q,R là các điểm tùy ý lần lượt nằm trên các cạnh BC,CA,AB (ko trùng với các đỉnh của tam giác ABC)
a) Tính độ dài cạnh AM theo a
b) CMR: BN = 3NM
c) Tìm GTNN của tổng PR + PQ
Áp dụng định lý Pitago trong tam giác vuông ABC ta có: (vì AB = AC) Từ đây suy ra . Lại có M là trung điểm của AC nên . |
Gọi I là trung điểm của BC, G là giao điểm của AI và BM, suy ra G là trọng tâm tam giác ABC, suy ra BM = 3GM (1). Do ABC là tam giác vuông nên AI = IB = IC, do đó tam giác IAC là tam giác cân tại I, suy ra (2) Lại có AM = MC (3). (4) Từ (2), (3) và (4) suy ra (c.g.c) Suy ra GM = NM (5). Từ (1) và (5) suy ra BM = 3NM (đpcm). |