Cho biểu thức: B = \(\left(\frac{8x\sqrt{x}-1}{2x-\sqrt{x}}-\frac{8x\sqrt{x}+1}{2x+\sqrt{x}}\right):\frac{2x+1}{2x-1}\) \(\left(x\ge0;x\ne\pm\frac{1}{2}\right)\)
Rút gọn B
Rút gọn biểu thức \(P=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
Cho biểu thức:
\(M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\)\(:\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a/ Rút gọn M
b/ Tính M khi \(x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)
\(a,M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\frac{2x-2\sqrt{2}x+2\sqrt{2x}-1}{2x-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x+1}}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(1+\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\right)\)
\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(\frac{-2\sqrt{x}-2}{2x-1}\right)\)
\(=\frac{-\sqrt{2}x+\sqrt{2x}}{\sqrt{x}-1}\)
\(=\frac{-\sqrt{2x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=-\sqrt{2x}\)
\(b,x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)
\(x=\frac{1}{2}\left(1+2\sqrt{2}+2\right)\)
\(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\)
Thay \(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\) vào \(M=-\sqrt{2x}\) ta được:
\(M=-\sqrt{2.\frac{1}{2}\left(1+\sqrt{2}\right)^2}\)
\(M=-1-\sqrt{2}\)
Vậy ..............
P=\(\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}-\sqrt{x}}{\sqrt{2x}-1}\right)\)
=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}+\frac{\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}+1\right)}{MTC}-\frac{2x-1}{MTC}\)
=\(\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}-2x+1}{MTC}\)
=\(\frac{2x\sqrt{2}+2\sqrt{2x}}{MTC}\)
Cho biểu thức:
\(M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a/ Rút gọn M
b/ Tính M khi \(x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)
Cho biểu thức A = \(\left(\dfrac{8x\sqrt{x}-1}{2x-\sqrt{x}}-\dfrac{8x\sqrt{x}+1}{2x+\sqrt{x}}\right):\dfrac{2x+1}{2x-1}\left(x>0;x\ne\dfrac{1}{2};x\ne\dfrac{1}{4}\right)\)
a) Rút gọn A
b) Tìm tất cả các giá trị của x để A là số chính phương
A= \(\frac{x-4\sqrt{x}+2}{\sqrt{x}-2}\) \(\left(x\ge0;x\ne4\right)\)
B= \(\frac{x\sqrt{x}-1}{x-1}\) \(\left(x\ge0;x\ne1\right)\)
C= \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\) \(\left(x>0;x\ne1\right)\)
D= \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) \(\left(x\ge2\right)\)
E= \(\frac{x+\sqrt{x^2}-2x}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
B=\(\frac{x\sqrt{x}-1}{x-1}\)(x>0,x≠1)
=\(\frac{\sqrt{x^3}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
Rút gọn biểu thức
\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\frac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^2}\right)\)
A = \(\frac{x-4\sqrt{x}+2}{\sqrt{x}-2}\) \(\left(x\ge0;x\ne1\right)\)
B = \(\frac{x\sqrt{x}-1}{x-1}\) \(\left(x\ge0;x\ne1\right)\)
C = \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)\(\left(x\ge2\right)\)
D = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)\(\left(x\ge2\right)\)
E = \(\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2}-2x}-\frac{x-\sqrt{x^2}-2x}{x+\sqrt{x^2}-2x}\)
Rút gọn
a)\(\sqrt{75}+\sqrt{75}-\)\(\sqrt{192}\)
b)3\(\sqrt{2x}-5\sqrt{2x}-5\sqrt{2x}+9-6\sqrt{2x}\left(x>0\right)\)
c)3\(\sqrt{2x}-4\sqrt{8x}-5\sqrt{50x}\left(x>0\right)\)
d)\(\frac{1}{x^2-y^2}.\sqrt{\frac{2\left(x+y\right)^2}{3}}\left(x\ge0;y\ge0;x\ne y\right)\)
e)\(\left(3\sqrt{2}+\sqrt{3}\right).\sqrt{2}\sqrt{54}\)
f)\(2\sqrt{21}-\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right).\sqrt{7}\)