Cho ΔABC có cân tại A.Trung tuyến CE và BD giao nhau tại G
a, Chứng minh rằng: AG là tia phân giác của góc A
b,Gọi K,I lần lượt là trung điểm AG,CG. Chứng minh : BD,CK,AI đồng quy
Cho tam giác ABC cân tại A; hai đường trung tuyến CE và BD giao nhau tại G.
a) Chứng minh tam giác ABD= tam giác ACE; BD= CE.
b) Chứng minh tia AG là phân giác của góc A
c) Gọi K là trung điểm của AG; I là trung điểm của CG. Chứng minh BD; CK; AI đồng quy.
a)Xét tam giác ABD và tam giác ACE,ta có:
A là góc chung
AB=AC(ví tam giác ABC cân tại A)
AE=AD(gt)
=> tam giác ABD=tam giác ACE(c.g.c)=>BD=CE( 2 cạnh tương ứng)
b)Vì BD,CE lần lượt là đường trung tuyến mà lại giao nhau tại G(mà BD=CE)=>GE=GD=1/3 BD=1/3 CE
=>EG=GD
Xét tam giác AEG và tam giác ADG ,ta có:
GE=GD(c/m trên)
AE=AD(gt)
AG cạnh chung
=>tam giác AEG=tam giác ADG(c.c.c)
=>góc EAG=góc DAG=>AG là tia p/g góc A
c)Ta có: Vì K là trung điểm AG;I là trung điểm GC và AD=DC
=>AI;CK:GD lần lượt là đường trung tuyến tam giác AGC=>BD;CK;AI đồng quy(t/c 3 đường trung tuyến của tam giác)
Cho tam giác ABC cân tại A , BD và CE là Hai trung tuyến cắt nhau tại G. Chứng minh : a, AG là giác của góc BAC b, tam giác BGC cân c, gọi K là trung điểm AG, I trung điểm của CG. chứng minh BD , CK , AI đồng quy. d, cho diện tích ABC = 300 cm2 . Tính diện tích BGC
a: Xet ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>AG là trung tuyên của ΔABC
mà ΔABC cân tại A
nên AG là phân giác của góc BAC
b ΔACB cân tại A
mà AG là trung tuyến
nên AG là trung trực của BC
=>GB=GC
c: Xét ΔGAC có
CK,AI,GD là trung tuyến
=>CK,AI,GD đồng quy
=>CD,AI,BD đồng quy
Cho tam giác ABC cân tại A, các đường trung tuyến BD và CE cắt nhau tại G.
a) Chứng minh rằng AG là tia phân giác của góc A
b) Lấy điểm I trên đoạn thẳng GC sao cho GI=GE. Gọi K là trung điểm của AG. Chứng minh rằng 3 đường thẳng BD, AI, CK đồng quy.
Cho tam giác ABC cân tại A, các đường trung tuyến BD và CE cắt nhau tại G
a) Chứng minh: AG là phân giác của góc A
b) Lấy điểm I trên đoạn GC / GI=GE. Gọi K là trung điểm của AG. Chứng minh rằng: 3 đường thẳng BD, AI, CK đồng quy
minh can gap lam giai giup minh voi
Cho tam giác ABC cân tại A, góc A tù, BD, CE lần lượt là tia phân giác của góc B,C. BH, CK lần lượt vuông góc với CE, BD tại H,K. - ED//BC - Gọi I là giao điểm của BD và CE, chứng minh AI là tia phân giác của góc A - BH=CK - Vẽ các tia Bx vuông góc với BD, Cy vuông góc với CE. Bx và Cy cắt nhau tại F, chứng minh A,F,I thẳng hàng
Cho tam giác ABC cân tại A. Trên tia đối của BC, CB lần lượt lấy điểm D, E sao cho BD = CE.
a) chứng minh tam giác ADE cân
b) Gọi M là trung điểm của BC. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. BH , CK cắ nhau tại I . Chứng minh AM, BH, CK đồng quy tại I
A)
TA CÓ
\(\widehat{B_1}+\widehat{B_2}=180^o\left(kb\right)\)
\(\widehat{C_1}+\widehat{C_2}=180^o\left(kb\right)\)
mà \(\widehat{B_2}=\widehat{C_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)
XÉT \(\Delta\)DAB VÀ \(\Delta EAC\)CÓ
\(AB=AC\left(GT\right)\)
\(\widehat{B_1}=\widehat{C_1}\left(CMT\right)\)
\(DB=EC\left(GT\right)\)
=>\(\Delta DAB=\Delta EAC\left(C-G-C\right)\)
\(\Rightarrow DA=EA\)
=>\(\Delta ADE\)CÂN TẠI A
B) VÌ \(\Delta ADE\)CÂn TẠI A
\(\Rightarrow\widehat{D}=\widehat{E}\)
XÉT \(\Delta DHB\)VÀ\(\Delta EKC\)CÓ
\(\widehat{DHB}=\widehat{EKC}=90^o\)
\(DB=EC\left(GT\right)\)
\(\widehat{D}=\widehat{E}\left(CMT\right)\)
=>\(\Delta DHB=\Delta EKC\left(CH-GN\right)\)
\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)
GIẢ SỬ GỌI O LÀ GIAO ĐIỂM CỦA AM,BH,CK
TA CÓ
\(\widehat{HBD}=\widehat{CBO}\left(Đ^2\right)\)
\(\widehat{ECK}=\widehat{BCO}\left(Đ^2\right)\)
MÀ \(\widehat{HBD}=\widehat{ECK}\)
=>\(\widehat{CBO}=\widehat{BCO}\)
=> \(\Delta COB\)CÂN TẠI O
MÀ BO LÀ TIA ĐỐI CỦA BH
OC LÀ TIA ĐỐI CỦA CK
OM LÀ TIA ĐỐI CỦA MA
=> \(AM,BH,CK\)ĐỒNG QUY TẠI MỘT ĐIỂM
đố các bn mình có mấy giấy khen thi cấp tĩnh ?
mình đoán là 1 giấy khen thi cấp tĩnh
Cho ΔABC cân tại A. Hai trung tuyến BM và CN cắt nhau tại G
a) chứng minh: tứ giác BCMN là hình thang cân
ΔBCN = ΔCBM
b) gọi I và P lần lượt là giao điểm của AG với MN và BC . Chứng minh rằng I và P lần lượt là trung điểm của MN và BC
c) trên tia đối của tia MGMG lấy điểm D sao cho MD = MG
trên tia đối của tia NG lấy điểm E sao cho NE = NG
chứng minh tứ giác BCDE là hình thang cân
Cho tam giác ABC có các đường trung tuyến BD và CE cắt nhau tại G. Gọi I là trung điểm BD và K là trung điểm CE. Chứng minh EI, DK, AG đồng qui
Cho tam giác ABC cân tại A. Gọi m và N lần lượt là trung điểm AB; AC.
A) chứng minh: tam giác ABN= tam giác ACM
B) gọi G là giao điểm của BN và CN. Trên tia đối của tia NG lấy điểm K sao cho NK= NG. Chứng minh: AG// CK
C) chứng minh: G là trung điểm của BK
D) chứng minh: AG vuông góc BC
Hình bạn tự vẽ nhé
a] Ta có AM=BM = \(\frac{1}{2}\) AB
AN = CN = \(\frac{1}{2}\) AC
mà AB = AC [ vì tam giác ABC cân tại A ]
\(\Rightarrow\) AM = BM = AN = CN [ * ]
Xét tam giác ABN và tam giác ACM có ;
AN = AM [ theo * ]
góc A chung
AB = AC [ vì tam giác ABC cân tại A ]
Do đó ; tam giác ABN = tam giác ACM [ c.g.c ]
b] Xét tam giác ANG và tam giác CNK có ;
NG = NK [ gt ]
góc ANG = góc CNK [ đối đỉnh ]
AN = CN [ theo * ]
Do đó ; tam giác ANG = tam giác CNK [ c.g.c ]
\(\Rightarrow\)góc AGN = góc CKN [ góc tương ứng ]
mà chúng ở vị trí so le trong
\(\Rightarrow\) AG // CK
c]Vì M , N lần lượt là trung điểm của AB , AC nên
BN , CM lần lượt là trung tuyến của AC , AB
mà G là giao điểm của BN , CM
\(\Rightarrow\) G là trọng tâm của tam giác ABC
\(\Rightarrow\) GN = \(\frac{1}{2}\) BG [ 1 ]
Ta có ; NG = NK [ gt ]
\(\Rightarrow\) NG = \(\frac{1}{2}\) GK [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra ; BG = GK
\(\Rightarrow\) G là trung điểm của BK
d]Ta có định lí ; Trong một tam giác cân đường trung tuyến nối từ đỉnh cân vừa là đường trung trực vừa là đường cao , đường phân giác của tam giác đó [ định lí sgk toán lớp 7 tập 2 ]
\(\Rightarrow\) AG là đường cao của tam giác ABC
\(\Rightarrow\) AG vuông góc với BC .
Chúc bạn học tốt , chọn k đúng cho mình nhé
Nhớ kết bạn với mình đó
nhớ chọn câu trả lời của mình nhé