Tìm x
a) (2x+3)2=9/25
b) (3x-1)3=-1/27
Tìm x, biết:
a) (2x+3)^2=9/121
b) (3x−1)^3=−8/27
a, \(\left(2x^3+3\right)^2=\frac{9}{121}=\left(\pm\frac{3}{11}\right)^2\)
Nếu \(2x+3=\frac{3}{11}\Rightarrow x=-\frac{15}{11}\)
Nếu \(2x+3=-\frac{3}{11}\Rightarrow x=-\frac{18}{11}\)
b,\(\left(3x-1\right)^3=-\frac{8}{27}=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow3x-1=-\frac{2}{3}\Leftrightarrow x=\frac{1}{9}\)
a, (2x+3)^2 = 9/121
=> 2x+3 = \(\sqrt{\frac{9}{121}}\)= \(\frac{3}{11}\)
=>x= \(\frac{\frac{3}{11}-3}{2}\) = \(-\frac{15}{11}\)
b,(3x-1)\(^3\)= \(-\frac{8}{27}\)
=> \(3x-1=\sqrt[3]{-\frac{8}{27}}=-\frac{2}{3}\)
=>\(x=\frac{-\frac{2}{3}+1}{3}=\frac{1}{9}\)
t còn thiếu 1 nghiệm nữa là \(-\frac{18}{11}\)
Tìm x, biết:
a) 3x(x - 1) + x - 1 = 0;
b) (x - 2)( x 2 + 2x + 7) + 2( x 2 - 4) - 5(x - 2) = 0;
c) ( 2 x - 1 ) 2 - 25 = 0;
d) x 3 + 27 + (x + 3)(x - 9) = 0.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
Tìm x biết:
a,(2x+3/5)^2-9/25=0
b,(3x-1).(-1/2x+5)=0
c, (7/5)^x+1-(1/5)^x=-4/625
d,(2/3)^x+2+(2/3)^x+1=20/27
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(=>2x+\frac{3}{5}=\frac{3}{5}\)
\(2x=\frac{3}{5}-\frac{3}{5}\)
\(2x=0\)
\(x=0:2\)
\(x=0\)
b) \(\left(3x-1\right).\left(-\frac{1}{2x}+5\right)=0\)
=> \(\left(3x-1\right)=0\)hoặc \(\left(-\frac{1}{2x}+5\right)=0\)hoặc \(\left(3x-1\right)\)và\(\left(-\frac{1}{2x}+5\right)\)cùng bằng 0.
\(\orbr{\begin{cases}3x-1=0\\-\frac{1}{2x}+5=0\end{cases}}=>\orbr{\begin{cases}3x=1\\-\frac{1}{2x}=-5\end{cases}}=>\orbr{\begin{cases}x\in\varnothing\\2x=\frac{1}{5}\end{cases}}=>x=\frac{1}{5}:2=>x=\frac{1}{10}\)
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\left(2x+\frac{3}{5}\right)^2=0+\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
b) \(\left(3x-1\right)\left(-\frac{1}{2}x+5\right)=0\)
\(\left(3x-1\right)\left(-\frac{x}{2}+5\right)=0\)
\(\left(3x-1\right)\left(5-\frac{x}{2}\right)=0\)
\(\orbr{\begin{cases}3x-1=0\\5-\frac{x}{2}=0\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)
\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)
\(\Leftrightarrow-4x=9\)
hay \(x=-\dfrac{9}{4}\)
10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)
Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)
\(\Leftrightarrow5x^2-7x=0\)
\(\Leftrightarrow x\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
13) Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
Suy ra: \(x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
Tìm số nguyên x biết:
a) 128-3.(5-2x)=107
b) (3x-25)-(x-9)=2-x
128 - 3.95 - 2\(x\) = 107
128 - 285 - 2\(x\) =107
-157 - 2\(x\) = 107
2\(x\) = -107 - 157
2\(x\) = -264
\(x\) = -264 : 2
\(x\) = -132
b, (3\(x\) - 25) - (\(x\) - 9) = 2 - \(x\)
3\(x\) - 25 - \(x\) + 9 = 2 - \(x\)
3\(x\) - \(x\) + \(x\) = 2 + 25 - 9
3\(x\) = 18
\(x\) = 18 : 3
\(x\) = 6
Bài 1: Rút gọn biểu thức sau:
A/ (x+3).(x^2-3x+9) -(54+x^3)
B/ (2x+y).(4x^2-2xy+y^2)-(2x-y).(4x^2+2xy+y^2)
C/ (2x-1)^2- (2x+2)^2
D/ (a+b)^3 - 3ab.(a+b)
Bài 2: tìm x, biết
A/ x^2-2x +1=25
B/ x^3 -3x^2= -3x+1
Bài 3 chứng minh rằng giá trị của biểu thức sau luôn dương với mọi giá trị của biến
A/ A= 4x^2+4x+2
B/ B= 2x^2-2x+1
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
A=(4x^2 +4x+1 )+1
A=(2x+1)^2 +1 >0
B=(x^2 -2x+1 )+x^2
B=(x-1)^2 +x^2 >0
Tìm X
a, 17/2 - |2x - 3/4| = -7/4
b, (x + 1/5)² + 17/25= 26/25
c, -1 5/27 - (3x -7/9)³ = -24/27
Phần c là -1 và 5/27 nhé (hỗn số)
`Answer:`
a. \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Leftrightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Leftrightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=\frac{41}{4}+\frac{3}{4}\\2x=-\frac{41}{4}+\frac{3}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=11\\2x=-\frac{19}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=11:2\\x=-\frac{19}{2}:2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=-\frac{19}{4}\end{cases}}\)
b. \(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{3}{5}\\x+\frac{1}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}-\frac{1}{5}\\x=-\frac{3}{5}-\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{4}{5}\end{cases}}\)
c. \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}-\left(-\frac{24}{27}\right)\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Leftrightarrow3x=-\frac{2}{3}+\frac{7}{9}\)
\(\Leftrightarrow3x=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{1}{9}:3\)
\(\Leftrightarrow x=\frac{1}{27}\)
a. 2/3x-1/2=1/10
b. 39/7:x=13
c. (14/5x-50):2/3=51
d. (x+1/2)(2/3-2x)=0
e. 2/3x-1/2x=5/12
g. (x.44/7+3/7)11/5-3/7=-2
h. x.13/4+(-7/6)x-5/3=5/12
i.93/17:x+(-4/17):x+22/7:52/3=4/11
j. 17/2-|2x-3/4|=-7/4
k. (x+1/5)^2+17/25=26/25
l. -32/27-(3x-7/9)^3=-24/27
a) \(\dfrac{2}{3}x-\dfrac{1}{2}=\dfrac{1}{10}\)
\(\dfrac{2}{3}x=\dfrac{1}{10}+\dfrac{1}{2}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)
b) \(\dfrac{39}{7}:x=13\)
\(x=\dfrac{\dfrac{39}{7}}{13}=\dfrac{3}{7}\)
c) \(\left(\dfrac{14}{5}x-50\right):\dfrac{2}{3}=51\)
\(\dfrac{14}{5}x-50=51\cdot\dfrac{2}{3}=34\)
\(\dfrac{14}{5}x=34+50=84\)
\(x=\dfrac{84}{\dfrac{14}{5}}=30\)
d) \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{5}{12}\)
\(\dfrac{1}{6}x=\dfrac{5}{12}\)
\(x=\dfrac{5}{12}:\dfrac{1}{6}=\dfrac{5}{2}\)
g) \(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\dfrac{11}{5}-\dfrac{3}{7}=-2\)
\(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\cdot\dfrac{11}{5}=-2+\dfrac{3}{7}=-\dfrac{11}{7}\)
\(x\cdot\dfrac{44}{7}+\dfrac{3}{7}=-\dfrac{11}{7}:\dfrac{11}{5}=-\dfrac{5}{7}\)
\(\dfrac{44}{7}x=-\dfrac{5}{7}-\dfrac{3}{7}=-\dfrac{8}{7}\)
\(x=-\dfrac{8}{7}:\dfrac{44}{7}=-\dfrac{2}{11}\)
h) \(\dfrac{13}{4}x+\left(-\dfrac{7}{6}\right)x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x=\dfrac{5}{12}+\dfrac{5}{3}=\dfrac{25}{12}\)
\(x=1\)
Mỏi tay woa bn làm nốt nha!!
a,2.(\(\dfrac{1}{4}\)+x)\(^3\)=(\(-\dfrac{27}{4}\))
b,(x+\(\dfrac{1}{2}\))\(^3\):3=\(\dfrac{-1}{81}\)
c,(\(\dfrac{2}{3}\)-x)\(^2\)=1:\(\dfrac{4}{9}\)
d,(2x-\(\dfrac{1}{5}\))\(^2\)+\(\dfrac{16}{25}\)=1
e,(\(\dfrac{2}{5}\)-3x)\(^2\)-\(\dfrac{1}{5}\)=\(\dfrac{4}{25}\)