Cho biểu thức M=(\(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\)):\(\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
a) Rút gon bieur thức M
b) So sánh giá trị của M với 1
Cho biểu thức M=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)với a > 0 và a khác 1
a) Rút gọn biểu thức M
b) So sánh giá trị của M với 1
a,Với \(a>0;a\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)
b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)
\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)
Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)
Cho biểu thức: \(B=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
a) Rút gon biểu thức
b) Tính giá trị của B nếu a=\(6+2\sqrt{5}\)
c) So sánh B với -1
a) B= \(\frac{1}{\sqrt{a}}\)(ĐKXĐ: a,b>0) B) Khi a= \(6+2\sqrt{5}\)thì B=\(\frac{1}{\sqrt{\left(\sqrt{5}+1\right)^2}}\)=\(\frac{1}{\sqrt{5}+1}\) C) Do \(\sqrt{a}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>-1\)
M=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1},\)voi a>0 va a#1
a)Rút gọn biểu thức M
b)so sánh giá trị của m với 1
Giúp mk với mk giúp lại cho
a ĐK \(a>0\)và \(a\ne1\)
. \(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
b. Ta có \(M-1=\frac{\sqrt{a}-1}{\sqrt{a}}-1=\frac{\sqrt{a}-1-\sqrt{a}}{\sqrt{a}}=\frac{-1}{\sqrt{a}}< 0\)
Vậy \(M< 1\)
1 Cho biểu thức
M=(\(\frac{\sqrt{a}+1}{\sqrt{a}-1}\) + \(\frac{1-\sqrt{a}}{\sqrt{a}+1}\)) :( \(\frac{\sqrt{a}+1}{\sqrt{a}-1}\)+ \(\frac{\sqrt{a}}{\sqrt{a}+1}\)+\(\frac{\sqrt{a}}{1-\sqrt{a}}\))
a. Rút gọn biểu thức M
b.Tính giá trị biểu thức M khi a=\(1\frac{\sqrt{3}}{2}\)
c.So sánh M với 2
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
Cho biểu thức
\(m=\left[\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right]:\left[1+\frac{a+b+2ab}{1-ab}\right]\)
a) Rút gọn M
b) Tính giá trị M với \(a=\frac{2}{2-\sqrt{3}}\)
c) Tìm gí trị lớn nhất của M
https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download
Cho biểu thức \(M=\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a}-1}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
Với những giá trị nào của a thì biểu thức \(N=\frac{6}{M}\) nhận giá trị nguyên?
Tính được
\(M=\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}\)
Với mọi a>0; \(a\ne1,\)ta có: \(\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}>0\Leftrightarrow M>0\left(1\right)\)
Lại có:
\(a-\sqrt{a}+1>0\forall a>0\)
\(\Leftrightarrow2a+4\sqrt{a}+2>6\sqrt{a}\)\(\Rightarrow2>\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}\Leftrightarrow M< 2\)(2)
Từ (1) và (2) => M đạt giá trị nguyên khi M=1
Bạn tự tìm a nha...
Cho \(M=\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a}-1}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a}-\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
a) CMR M>4
b) Với những giá trị nào của a biểu thức \(N=\frac{6}{M}\)nhận giá trị nguyên
cho biểu thức\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{3x}{x-1}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a)Tìm điều kiện xác định của A
b)Rút gon A
c) Tìm các giá trị nguyên của x để A có giá trị nguyên