Tìm các số nguyên x để:
a)\(\frac{x+2}{3}\in Z\)
b)\(\frac{7}{x-1}\in Z\)
1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)
2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)
3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)
4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)
7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên
8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)
a) Tìm số nguyên \(n\)để \(A\)là phân số
b) Tìm số nguyên \(n\)để \(A\)là số nguyên
9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên
10. Tìm tập hợp các số nguyên \(a\)là bội của 3:
\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)
\(D=\frac{15\sqrt{x}-3}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, rút gọn
b, tìm x để B < -4
c, tìm x \(\in\)Z để D \(\in\)Z
d, tìm GTLN của D
Tìm x € Z để A là số nguyên:
a, \(A=\frac{x+3}{x-2}\)
b, \(A=\frac{1-2x}{x+3}\)
\(A=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
x-2=+-1,+-5
x=-3,1,3,7
a) So \(M=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)vs-\frac{1}{2}\)
b) \(N=\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm \(x\in Z\) để \(N\)là số nguyên dương
b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)
\(\Leftrightarrow x>9\)
mà x là số nguyên
nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)
\(Q=\left(\frac{\sqrt{x}}{2+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
a, rút gọn
b, tìm Q < -1
c, tìm x để Q = \(\frac{-3}{4}\)
d, tìm x \(\in\)Z để Q \(\in\)Z
Tìm x thuộc Z để các biểu thức sau là số nguyên:
a/ A= \(\frac{2x-5}{3}\)
b/ B= \(\frac{5}{2x+1}\)
c/ C= \(\frac{2x-3}{x+1}\)
Tìm x \(\in\) Z để mỗi phân số sau nhận giá trị nguyên
\(\frac{x-5}{2x+1}\)
Cho phân số \(D=\frac{2n+7}{n+3}\)(n\(\in\)Z , n khác -3)
Tìm các giá trị nguyên của n để D là số nguyên
de D co gia tri la mot so nguyen thi 2n+7 chia het cho n+3
tìm x nguyên để các phân số sau là số nguyên
a, \(\frac{-3}{x-1}\)
b, \(\frac{4x-1}{3-x}\)
a) Để \(\frac{-3}{x-1}\) đạt giá trị nguyên
<=> -3 chia hết cho x-1
=> x-1 thuộc Ư(-30={-3;-1;1;3}
Ta có bảng sau:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
Vậy x = -2;0;2;4
b) Để \(\frac{4x-1}{3-x}\) đạt giá trị nguyên
<=> 4x - 1 chia hết cho 3 - x
=> (4x-12)+11 chia hết cho 3 - x
=> 4(x-3)+11 chia hết cho 3-x
=> 4(x-3) chia hết cho 3-x ( điều này luôn luôn đúng với mọi x )
Và 11 cũng phải chia hết cho 3-x
=> 3-x thuộc Ư(11)={-11;-1;1;11}
Ta có bảng sau:
3-x | -11 | -1 | 1 | 11 |
x | 14 | 4 | 2 | -8 |
Vậy x = 14;4;2;-8
a)Để \(-\frac{3}{x-1}\) (x khác 1) là số nguyên thì: \(x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\Rightarrow x=2;0;4;-2\)
b)\(\frac{4x-1}{3-x}=\frac{4x-12}{3-x}+\frac{11}{3-x}=\frac{-4.\left(3-x\right)}{3-x}+\frac{11}{3-x}=-4+\frac{11}{3-x}\)
Để \(\frac{4x-1}{3-x}\) (x khác 3) là số nguyên thì:
\(3-x\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\Rightarrow x=2;4;-8;14\)
a, \(\frac{-3}{x-1}\)
Để \(\frac{-3}{x-1}\) nguyên thì \(-3⋮x-1\Rightarrow x-1\inƯ\left(-3\right)\)
Mà \(Ư\left(-3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x-1\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{2;0;4;-2\right\}\)
Vậy để p/s \(\frac{-3}{x-1}\) nguyên thì \(x\in\left\{2;0;4;-2\right\}\)
b, \(\frac{4x-1}{3-x}\)
Ta có:
\(\frac{4x-1}{3-x}=\frac{4x-12+11}{3-x}=\frac{-\left(12-4x\right)+11}{3-x}=-4+\frac{11}{4x-12}\)
Để \(\frac{4x-1}{3-x}\) nguyên thì \(\frac{11}{4x-12}\) phải nguyên
\(\Rightarrow11⋮3-x\)
\(\Rightarrow3-x\inƯ\left(11\right)\)
\(\Rightarrow3-x\in\left\{1;-1;11;-11\right\}\)
\(\Rightarrow x\in\left\{2;4;-8;14\right\}\)