(x\(^4\))\(^2\)= \(\frac{x^{12}}{x^5}\)(x≠0)
Giải phương trình: \(\frac{x+1}{4}-\frac{x+2}{5}+\frac{x+4}{7}-\frac{x+5}{8}+\frac{x+7}{10}-\frac{x+9}{12}=0\) = 0
1) Tìm x:
a) \(\frac{11}{12}-\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
c) 2x.(x-\(\frac{1}{7}\))=0
d) (x + 1) . (x - 2) < 0
e) (x - 2) . ( x + \(\frac{2}{3}\) ) >0
1) Tìm x:
a) \(\frac{11}{12}-\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{5}+x=\frac{1}{4}:\frac{5}{12}=\frac{3}{5}\)
\(\Leftrightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
\(\Leftrightarrow x=-\frac{7}{20}:\frac{1}{4}=\frac{-7}{5}\)
a) \(\frac{11}{12}-\frac{5}{12}\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{5}{12}.\frac{2}{5}-\frac{5}{12}x=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{1}{6}-\frac{5}{12}x=\frac{2}{3}\)
\(\Leftrightarrow\frac{-5}{12}x=\frac{2}{3}-\frac{11}{12}+\frac{1}{6}\)
\(\Leftrightarrow-\frac{5}{12}x=\frac{8}{12}-\frac{11}{12}+\frac{2}{12}=-\frac{1}{12}\)
\(\Leftrightarrow x=\frac{-1}{12}:\left(-\frac{5}{12}\right)=-\frac{1}{12}.\left(-\frac{12}{5}\right)=\frac{1}{5}\)
Vậy x = 1/5
b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=\frac{8}{20}-\frac{15}{20}=-\frac{7}{20}\)
\(\Leftrightarrow x=\frac{1}{4}:\left(-\frac{7}{20}\right)=\frac{1}{4}.\left(-\frac{20}{7}\right)=-\frac{5}{7}\)
Vậy x = -5/7
c) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\frac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{7}\end{matrix}\right.\)
d) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\end{matrix}\right.\)
Ta thấy x <-1 và x >2 vô lí
Do đó: x >-1 và x <2
Vậy -1 < x <2
e) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy x > 2 hoặc x < -2/3
Giải phương trình: \(\frac{x+1}{4}-\frac{x+2}{5}+\frac{x+4}{7}-\frac{x+5}{8}+\frac{x+7}{10}-\frac{x+9}{12}\)= 0
Theo mình thì VP = -5, vì nếu VP = 0 thì theo cách làm của mình x = \(\frac{-531}{23}\) (số to quá nên mình nghĩ là đề sai)
\(\frac{x+1}{4}-\frac{x+2}{5}+\frac{x+4}{7}-\frac{x+5}{8}+\frac{x+7}{10}-\frac{x+9}{12}=5\)
\(\Leftrightarrow\) \(\frac{x+1}{4}-1-\frac{x+2}{5}-1+\frac{x+5}{8}-1+\frac{x+7}{10}-1-\frac{x+9}{12}-1=0\)
\(\Leftrightarrow\) \(\frac{x-3}{4}-\frac{x-3}{5}+\frac{x-3}{8}+\frac{x-3}{10}-\frac{x-3}{12}=0\)
\(\Leftrightarrow\) (x - 3)(\(\frac{1}{4}-\frac{1}{5}+\frac{1}{8}+\frac{1}{10}-\frac{1}{12}\)) = 0
\(\Leftrightarrow\) x - 3 = 0
\(\Leftrightarrow\) x = 3
Vậy S = {3}
Chúc bn học tốt!!
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
a) x +\(\frac{5}{x}\)> 0
b) \(\frac{6}{x^2-1}\)+ 5 = \(\frac{8x-1}{4x+4}-\frac{12-1}{4-4x}\)
c) (x2 - 2x) (x3 -3x2-18x) =0
d) \(\frac{x+1}{12}-\frac{x-1}{6}>\frac{x-2}{8}-\frac{x+3}{8}\)
e) / 2x-3/ = x-1
f) /x-5/-5=7
\(e)\) \(\left|2x-3\right|=x-1\)
Ta có :
\(\left|2x-3\right|\ge0\)\(\left(\forall x\inℚ\right)\)
Mà \(\left|2x-3\right|=x-1\)
\(\Rightarrow\)\(x-1\ge0\)
\(\Rightarrow\)\(x\ge1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=x-1\\2x-3=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-x=-1+3\\2x+x=1+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\3x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=\frac{4}{3}\left(tm\right)\end{cases}}}\)
Vậy \(x=2\) hoặc \(x=\frac{4}{3}\)
Chúc bạn học tốt ~
\(f)\) \(\left|x-5\right|-5=7\)
\(\Leftrightarrow\)\(\left|x-5\right|=12\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=12\\x-5=-12\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\\x=-7\end{cases}}}\)
Vậy \(x=17\) hoặc \(x=-7\)
Chúc bạn học tốt ~
a.\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)
b.\(\frac{12}{x^2-4}-\frac{x+1}{x-2}+\frac{x+7}{x+2}=0\)
c.\(\frac{12}{8-x^3}=1+\frac{1}{x+2}\)
d.\(\frac{x+25}{2x^2-50}-\frac{x+5}{x^2-5x}=\frac{5-x}{2x^2+10x}\)
e.\(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(a.\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\left(dkxd:x\ne\pm1\right)\\\Leftrightarrow \frac{\left(x+1\right)^2}{x^2-1}-\frac{\left(x-1\right)^2}{x^2-1}=\frac{16}{x^2-1}\\\Leftrightarrow \left(x+1\right)^2-\left(x-1\right)^2=16\\\Leftrightarrow \left(x+1-x+1\right)\left(x+1+x-1\right)-16=0\\\Leftrightarrow 4x-16=0\\\Leftrightarrow 4\left(x-4\right)=0\\\Leftrightarrow x-4=0\\ \Leftrightarrow x=4\left(tmdk\right)\)
\(b.\frac{12}{x^2-4}-\frac{x+1}{x-2}+\frac{x+7}{x+2}=0\left(dkxd:x\ne\pm2\right)\\ \Leftrightarrow\frac{12}{x^2-4}-\frac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\frac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\\\Leftrightarrow 12-x^2-3x-2+x^2+5x-14=0\\ \Leftrightarrow2x-4=0\\\Leftrightarrow 2\left(x-2\right)=0\\\Leftrightarrow x-2=0\\\Leftrightarrow x=2\left(ktmdk\right)\)
Vô nghiệm
Tìm x:
a) \(\frac{-15}{12}x+\frac{3}{7}=\frac{6}{4}x-\frac{1}{2}\)
b) \(\frac{2}{5}\left(x+1\right)-\frac{4}{5}x=0\)
a)\(-\frac{15}{12}x+\frac{3}{7}=\frac{6}{4}x-\frac{1}{2}\)
\(\Leftrightarrow\frac{15}{12}x+\frac{6}{4}x=\frac{1}{2}+\frac{3}{7}\)
\(\Leftrightarrow\frac{11}{4}x=\frac{9}{14}\Leftrightarrow x=\frac{36}{154}\)
b) \(\frac{2}{5}\left(x+1\right)-\frac{4}{5}x=0\)
\(\Leftrightarrow\frac{2}{5}x+\frac{2}{5}-\frac{4}{5}x=0\)
\(\Leftrightarrow-\frac{2}{5}x=-\frac{2}{5}\Leftrightarrow x=1\)
Gpt:
a.5.\(\left(\frac{x-2}{x+1}\right)^2-44.\left(\frac{x+2}{x-1}\right)^2+12.\frac{x^2-4}{x^2-1}\)= 0
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\frac{x-2}{x+1}=a\\\frac{x+2}{x-1}=b\end{matrix}\right.\) pt trở thành:
\(5a^2-44b^2+12ab=0\) \(\Leftrightarrow\left(a-2b\right)\left(5a+22b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\5a=-22b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x-2}{x+1}=\frac{2x+4}{x-1}\\\frac{5x+10}{x-1}=\frac{-22x-44}{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-2\right)-\left(2x-4\right)\left(x+1\right)=0\\\left(5x+10\right)\left(x-1\right)+\left(22x+44\right)\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Cách anh chị nào giỏi xem hộ xem em làm đúng chưa ạ, Em cảm ơn nhiều:tìm x y z\(|\frac{1}{4}-x|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0.\)
Vì \(\left|x\right|=xhay\left|-x\right|=x\)do đó giá trị truyệt đối của một số luôn là số dương cho nên để có phép tính cộng có các số hạng là các giá trị tuyệt đối mà bằng 0 thì các số hạng đó sẽ đều là 0.
\(\Rightarrow\left|\frac{1}{4}-x\right|=\left|x-y+z\right|=\left|\frac{2}{3}+y\right|=0\)
\(\Leftrightarrow\frac{1}{4}-x=0\)
\(-x=0-\frac{1}{4}\)
\(-x=-\frac{1}{4}\)
\(x=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{3}+y=0\)
\(y=0-\frac{2}{3}\)
\(y=-\frac{2}{3}\)
\(\Leftrightarrow x-y+x=0\)
\(\frac{1}{4}-\frac{2}{3}+z=0\)
\(-\frac{5}{12}+z=0\)
\(z=0+\frac{5}{12}\)
\(z=\frac{5}{12}\)
\(\Rightarrow x=\frac{1}{4};y=-\frac{2}{3};z=\frac{5}{12}\)
Đáp án đúng nhưng cách làm này là sai
bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ
\(|\frac{1}{4}-x|+|x-y+z|+|\frac{2}{3}+y|=0\)
Ta có: \(\hept{\begin{cases}|\frac{1}{4}-x|\ge0;\forall x,y,z\\|x-y+z|\ge0;\forall x,y,z\\|\frac{2}{3}+y|\ge0;\forall x,y,z\end{cases}}\)
\(\Rightarrow|\frac{1}{4}-x|+|x-y+z|+|\frac{2}{3}+y|\ge0;\forall x,y,z\)
Do đó \(|\frac{1}{4}-x|+|x-y+z|+|\frac{2}{3}+y|=0\)
\(\Leftrightarrow\hept{\begin{cases}|\frac{1}{4}-x|=0\\|x-y+z|=0\\|\frac{2}{3}+y|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{4}-x|=0\\x-y+z|=0\\\frac{2}{3}+y|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\z=\frac{-11}{12}\\y=\frac{-2}{3}\end{cases}}\)
Vậy ...