Cho tam giác ABC vuông tại A. Đường cao AH. Gọi M,N là hình chiếu của H trên AC,AB.
Chứng minh rằng:
a, \(\sqrt[3]{BC^2}\)=\(\sqrt[3]{BN^2}\)+\(\sqrt[3]{CM^2}\)
b, BN\(\sqrt{CH}\)+CM\(\sqrt{BH}\)=AH\(\sqrt{BC}\).
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E,F là hình chiếu của H lên AB,AC. Chứng minh rằng:
\(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\sqrt[3]{BC^2}\)
ta can cm\(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}\) =\(\sqrt[3]{BC}\)
hay \(\sqrt[3]{\frac{BE^2}{BC^2}}+\sqrt[3]{\frac{CF^2}{BC^2}}=1\)
trong tam giác AHB \(BH^2=BE.BA\Rightarrow BE=\frac{BH^2}{BA}\Rightarrow BE^2=\frac{BH^4}{BA^2}\) (1)
ma trong tam giac ABC \(AB^2=BH.BC\)
thay vao (1) ta co \(BE^2=\frac{BH^4}{AB^2}=\frac{BH^4}{BH.BC}=\frac{BH^3}{BC}\Rightarrow\frac{BE^2}{BC^2}=\frac{BH^3}{BC^3}\)
\(\Rightarrow\sqrt[3]{\frac{BE^2}{BC^2}}=\frac{BH}{BC}\)
CM TUONG TU \(\sqrt[3]{\frac{CF^2}{BC^2}}=\frac{CH}{BC}\)
VAY \(\sqrt[3]{\frac{BE^2}{BC^2}}+\sqrt[3]{\frac{CF^2}{BC^2}}=\frac{HB}{BC}+\frac{CH}{BC}=1\)
cho tam giác ABC vuông tại A, đường cao AH, từ H dựng HM,HN lần lượt vuông góc với AC,AB. chứng minh \(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}.\)
GIÚP MÌNH VỚI MÌNH CẦN GẤP TRƯA NAY!!!!
Cho tam giác ABC (AB<AC) vuông tai A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC. Chứng minh rằng: \(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)
Hệ thức lượng: \(AH^2=BH.CH\)
Hai tam giác vuông BEH và HFC đồng dạng: \(\Rightarrow\dfrac{BE}{FH}=\dfrac{EH}{CF}\Rightarrow BE.CF=EH.FH\)
Hai tam giác vuông AEH và CFH đồng dạng \(\Rightarrow\dfrac{AH}{CH}=\dfrac{EH}{FH}\Rightarrow AH.FH-CH.EH=0\)
Hai tam giác vuông BEH và AFH đồng dạng \(\Rightarrow\dfrac{BH}{AH}=\dfrac{EH}{FH}\Rightarrow EH.AH-BH.FH=0\)
Ta có: \(\left(BE\sqrt{CH}+CF\sqrt{BH}\right)^2=BE^2.CH+CF^2.BH+2BE.CF.\sqrt{BH.CH}\)
\(=BE^2.CH+CF^2.BH+2BE.CF.AH\)
\(=\left(BH^2-EH^2\right)CH+\left(CH^2-FH^2\right)BH+2BE.CF.AH\)
\(=BH.CH\left(BH+CH\right)-EH^2.CH-FH^2.BH+2EH.FH.AH\)
\(=AH^2.BC+EH\left(AH.FH-EH.CH\right)+FH\left(AH.EH-FH.BH\right)\)
\(=AH^2.BC=\left(AH\sqrt{BC}\right)^2\)
\(\Rightarrow BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)
Cho tam giác ABC vuông tại A, có AH là đường cao.
a) Biết BH=9cm, CH=16cm. Tính AH và góc ABC ( tính góc làm tròn đến độ )
b) Biết \(2.AC=\sqrt{3}.BC\). Tính giá trị của biểu thức M = \(\frac{\sin B-cosB}{tanB+cotB}\)
c) Gọi D, E lần lượt là hình chiếu của H trên AB và AC. Chứng minh: \(\sqrt[3]{BD^2}+\sqrt[3]{CE^2}=\sqrt[3]{BC^2}\)
Cho tam giác ABC vuông tại A tính BH,CH, AC ,AH biết:
1, AB =12 cm BC= 13cm
AB =5 cm BC= 1dm
AB =3\(\sqrt{3}\) cm BC= 9cm
2,Tính BC ,AH, BH ,CH
AB =24 cm AC= 18cm
AB =2\(\sqrt{2}\) cm AC= 2\(\sqrt{2}\)cm
AB =3\(\sqrt{3}\) cm AC= 9cm
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH. Gọi M và N lần lượt là hình chiếu của H trên AB và AC. Chứng minh:
A. AB^2/AC^2=BM/AM
B. Gọi I là giao điểm BN và CM. Chứng minh: SBIC=SAMIN
Là hỏi toán mà lại ghi là TA
cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E là hình chiếu vuông góc của H trên AB,AC. Tính số đo các góc của tam giác HDE. Biết \(\dfrac{DE}{BC}\)\(=\dfrac{\sqrt{3}}{4}\)
Cho tam giác ABC có AB=AC=\(\sqrt{5}\) cm,độ dài đường cao AH=\(\sqrt{3}\) cm .Gọi M,N lần lượt là trung điểm của HC và AC.Tính độ dài đoạn thẳng AM và BN
Do AH là đường cao trong tam giác ABC cân tại A nên AH cùng là đường trung tuyến
\(\Rightarrow\)H là trung điểm của BC
Áp dụng định lý py-ta-go vào tam giác vuông AHC có:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{2}\left(cm\right)\)
Do M là trung điểm của HC\(\Rightarrow HM=\dfrac{HC}{2}=\dfrac{\sqrt{2}}{2}\) (cm)
Áp dụng định lý py-ta-go vào tam giác AMH vuông có:
\(AH^2+HM^2=AM^2\)
\(\Leftrightarrow AM=\sqrt{AH^2+HM^2}=\sqrt{3+\dfrac{1}{2}}=\dfrac{\sqrt{14}}{2}\left(cm\right)\)
Có M và H lần lượt là tđ của HC và CA
Suy ra MN là đường trung bình của tam giác AHC
\(\Rightarrow\) MN//AH và \(MN=\dfrac{AH}{2}=\dfrac{\sqrt{3}}{2}\)(cm)
Vì \(AH\perp BC\)\(\Rightarrow MN\perp BC\)
Áp dụng định lý py-ta-go vào tam giác BNM vuông có:
\(BN^2=MN^2+BM^2=\dfrac{3}{4}+\left(BC-MC\right)^2=\dfrac{3}{4}+\left(2HC-HM\right)^2=\dfrac{3}{4}+\dfrac{9}{2}=\dfrac{21}{4}\)
\(\Rightarrow BN=\dfrac{\sqrt{21}}{2}\) (cm)
Vậy...
\(AB=AC\Rightarrow\Delta ABC\) cân tại A \(\Rightarrow\) AH là đường cao đồng thời là trung tuyến hay H là trung điểm BC
\(\Rightarrow BH=CH\)
Pitago cho tam giác ACH: \(CH=\sqrt{AC^2-AH^2}=\sqrt{2}\)
\(\Rightarrow HM=\dfrac{1}{2}CH=\dfrac{\sqrt{2}}{2}\) \(\Rightarrow BM=BH+HM=CH+HM=\dfrac{3\sqrt{2}}{2}\)
Pitago tam giác AHM: \(AM=\sqrt{AH^2+HM^2}=\dfrac{\sqrt{14}}{2}\)
Do N là trung điểm AC, M là trung điểm HC \(\Rightarrow MN\) là đường trung bình tam giác ACH
\(\Rightarrow\left\{{}\begin{matrix}MN||AH\Rightarrow MN\perp BC\\MN=\dfrac{1}{2}AH=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)
Pitago tam giác BMN: \(BN=\sqrt{BM^2+MN^2}=\dfrac{\sqrt{21}}{2}\)
Bài 1:Cho tam giác ABC vuông tại A, đường cao AH =h, BC=a. Vẽ HD vuông AB, HE vuông AC. Đặt BD=m, CE=n. Chứng minh rằng:
\(a,h^3=amn\)
\(b,\sqrt[3]{a^2}=\sqrt[3]{m^2}+\sqrt[3]{n^2}\)
Bài 2: Cho tứ giác ABCD có AC=6, BD=4. Chứng minh rằng:
a, Tồn tại hai cạnh của tứ giác nhỏ hơn 5;
b, Tồn tại hai cạnh của tứ giác lớn hơn 3,6.