Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Anh
Xem chi tiết
hoidaptoanhoc
13 tháng 5 2015 lúc 20:28

p=2 thì p^4+2 là hợp số

p=3 =>p^4+2=83 là số nguyên tố

với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số

vậy p=3

Trần Tuyết Như
14 tháng 5 2015 lúc 13:18

giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương

Đặt  2n + 2003 = k2        (1)      và  3n + 2005 = m2              (2)   (k, m \(\in\) N)

trừ theo từng vế của (1), (2) ta có: 

 n + 2 = m2 - k2

khử n từ (1) và (2)  =>  3k2  - 2m2 = 1999            (3)

từ (1)   =>  k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1)  - 2m2 = 1999 

<=> 2m= 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2             (4)

vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) =>  m2 chia 4 dư 2, vô lý

vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán

Nguyễn Minh Phương
Xem chi tiết
Nguyễn Minh Phương
24 tháng 8 2016 lúc 20:40

giúp mk vs mn ơi

Changhu
Xem chi tiết
N.T.M.D
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
OOOOOOO PƠ Fuck
Xem chi tiết
Nguyễn Mạnh Tùng
8 tháng 11 2021 lúc 18:45

so 2 phai ko

Khách vãng lai đã xóa
trwsst
16 tháng 10 2022 lúc 8:29

hỏi cô mày ra đáp án liền tao thề:o

tnt
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2023 lúc 23:32

Với \(p=2\) không thỏa mãn, xét với \(p>2\):

Đặt \(\left\{{}\begin{matrix}\dfrac{p+1}{2}=m^2\\\dfrac{p^2+1}{2}=n^2\end{matrix}\right.\) với m; n là các số nguyên dương và \(n>m\)

\(\Rightarrow\left\{{}\begin{matrix}p=2m^2-1\\p^2=2n^2-1\end{matrix}\right.\) \(\Rightarrow p^2-p=2n^2-2m^2\)

\(\Rightarrow p\left(p-1\right)=2\left(n-m\right)\left(n+m\right)\) (1)

Nếu \(p\le n\Rightarrow n^2+1\ge p^2+1=2n^2\Rightarrow n^2\le1\Rightarrow n=1\Rightarrow p=1\) (ktm)

\(\Rightarrow p>n>m\)

\(\Rightarrow n-m< p\) và \(n+m< 2p\) (2)

Từ (1) \(\Rightarrow2\left(n-m\right)\left(n+m\right)⋮p\), mà \(\left\{{}\begin{matrix}2⋮̸p\\n-m⋮̸p\end{matrix}\right.\) \(\Rightarrow n+m⋮p\) (3)

(2);(3) \(\Rightarrow n+m=p\)

Thay vào \(p^2+1=2n^2=2\left(p-m\right)^2\)

\(\Rightarrow p^2-4mp+2m^2-1=0\)

\(\Rightarrow p^2-4mp+p=0\) (do \(2m^2-1=p\))

\(\Rightarrow p-4m+1=0\)

\(\Rightarrow2m^2-4m=0\) (do \(p+1=2m^2\))

\(\Rightarrow\left[{}\begin{matrix}m=0\left(loại\right)\\m=2\end{matrix}\right.\) 

\(\Rightarrow p=2m^2-1=7\)

\(\Rightarrow p^2-1=49-1=48⋮48\)

tnt
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2023 lúc 23:06

Đề bài sai, \(p^2+1\) không chia hết cho 3 với mọi p

\(\Rightarrow p^2+1\) không thể chia hết 48 với mọi p

Nguyễn Sỹ Hoàng
Xem chi tiết