Cho hbh ABCD, O là giao điểm của 2 đg chéo AC và BD. Đg thẳng qua O cắt AD tại P và cắt BC tại Q. CMR:
a. OP= OQ.
b. Đg thẳng đi qua O cắt AB ở M và cắt CD tạo N. CM: PMQN là hình bình hành
help!
Cho hbh ABCD, O là giao điểm của 2 đg chéo AC và BD. Đg thẳng qua O cắt AD tại P và cắt BC tại Q. CMR: a. OP= OQ. b. Đg thẳng đi qua O cắt AB ở M và cắt CD tạo N. CM: PMQN là hình bình hành
Cho hbh ABCD, O là giao điểm của 2 đg chéo AC và BD. Đg thẳng qua O cắt AD tại P và cắt BC tại Q. CMR:
a. OP= OQ.
b. Đg thẳng đi qua O cắt AB ở M và cắt CD tạo N. CM: PMQN là hình bình hành
Cho tứ giác ABCD,O là giao điểm của 2 đường chéo AC và BD.Đường thằng song song với BC qua O,cắt AB ở E và đường thẳng song song với CD qua O,cắt AD ở F
a,CMR: Đường thẳng EFsong song với đg chéo BD
b,Từ O vẽ các dduong thẳng song song với AB và AD,cắt BC và DC tại G và H.CMRL CG.DH=BG.CH
cho hình bình hành ABCD , O là giao điểm 2 đg chéo 1 đg thẳng đi qua O cắt các cạnh AB và CD theo thư tự ở M và N
CM: M đối xứng với M qua O
Xét ΔMAO và ΔNCO có
\(\widehat{MAO}=\widehat{NCO}\)
OA=OC
\(\widehat{MOA}=\widehat{NOC}\)
Do đó: ΔMAO=ΔNCO
Suy ra: MO=NO
hay O là trung điểm của MN
cho hình bình hành abcd. gọi o là giao điểm hai đường chéo ac và bd. qua điểm o, vẽ đường thẳng d cắt hai đường thẳng ad, bc lần lượt tại e, f. qua o vẽ đưòng thẳng d' cắt hai cạnh ab, cd lần lượt tại k, h.
a cm akch và aecf là hbh
b cm ekfh là hbh
Vẽ hộ mình cái hình nhe
Cho tam giác ABC. Từ A, kẻ đường thẳng song song với BC. Từ C, kẻ đường thẳng song song với AB. Hai đường thẳng này cắt nhau tại D.
a, Cm AD=BC và AB=CD
b, Gọi O là giao của AC và BD. Cm O là trung điểm của AC và BD.
c, Qua O, kẻ đg thẳng bất kì cắt 2 đg thẳng AB và CD lần lượt ở M và N. Cm O là trung điểm của MN.
Giúp mk mọi người ơi!!! Câu a mk làm đc rồi nha!!! Làm câu b và c giúp mk!!! Mk cảm ơn!!!
Cho tứ giác ABCD có AD=BC=AB<CD . 2 đg chéo cắt nhau tại O , gọi M là gđ của BC và AD , vẽ hình bình hành AMBK. ĐG thẳng KO cắt BC tại N . CMR AM=BN
GIÚP MÌNH 2 CÂU CUỐI THÔI
cho hình thang ABCD (AB//CD) gọi giao điểm 2 đg chéo AC và BD là O, OA=4cm, OC=8cm, AB=5cm
a) tính CD, c/m: AO.OD=OC.OB
b) qua O kẻ đg thẳng HK ⊥ AB( H∈AB,K∈CD). Tính \(\dfrac{OH}{OK}\)
c) qua O kẻ đg thẳng // với 2 đáy, cắt AD, BC lần lượt tại E, F. C/m: \(\dfrac{AE}{AD}+\dfrac{CF}{BC}=1\)
b) -Xét △AOH có: AB//CD (gt).
\(\Rightarrow\dfrac{AO}{OC}=\dfrac{OH}{OK}\) (định lí Ta-let).
\(\Rightarrow\dfrac{OH}{OK}=\dfrac{4}{8}=\dfrac{1}{2}\).
c) -Xét △ADC có: OE//DC (gt).
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AO}{AC}\) (định lí Ta-let).
-Xét △ABC có: OF//AB (gt).
\(\Rightarrow\dfrac{AO}{AC}=\dfrac{BF}{BC}\) (định lí Ta-let).
Mà \(\dfrac{AE}{AD}=\dfrac{AO}{AC}\) nên \(\dfrac{AE}{AD}=\dfrac{BF}{BC}\)
\(\Rightarrow\dfrac{AE}{AD}+\dfrac{CF}{BC}=\dfrac{BF}{BC}+\dfrac{CF}{BC}=\dfrac{BC}{BC}=1\)
GIÚP MÌNH 2 CÂU CUỐI THÔI
cho hình thang ABCD (AB//CD) gọi giao điểm 2 đg chéo AC và BD là O, OA=4cm, OC=8cm, AB=5cm
a) tính CD, c/m: AO.OD=OC.OB
b) qua O kẻ đg thẳng HK ⊥ AB( H∈AB,K∈CD). Tính \(\dfrac{OH}{OK}\)
c) qua O kẻ đg thẳng // với 2 đáy, cắt AD, BC lần lượt tại E, F. C/m: \(\dfrac{AE}{AD}+\dfrac{CF}{BC}=1\)