Những câu hỏi liên quan
Nguyễn Thanh Hiền
Xem chi tiết
Mai Thị Thanh
Xem chi tiết
Họ Và Tên
26 tháng 8 2021 lúc 7:20

\(\left(a+c\right)\left(b+d\right)+2\left(ac+bd\right)\le\left(a+c\right)\left(b+d\right)+2\left(\dfrac{\left(a+c\right)^2}{4}+\dfrac{\left(b+d\right)^2}{4}\right)\\ =\dfrac{1}{2}\left(\left(a+c\right)^2+2\left(a+c\right)\left(b+d\right)+\left(b+d\right)^2\right)\\ =\dfrac{1}{2}\left(a+c+b+d\right)^2=\dfrac{1}{2}\)

Trung Nguyen
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 12 2020 lúc 22:22

\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)

\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)

Ta có:

\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)

\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)

\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)

Trần Quang Chiến
Xem chi tiết
Trà My
17 tháng 3 2017 lúc 15:23

B1: https://olm.vn/hoi-dap/question/133327.html

B2: áp dụng bđt Bu-nhi-a-cop-xki với 2 bộ số (a;b) và (c;d) ra luôn

Hoàng Phúc
17 tháng 3 2017 lúc 16:38

điều kiện ?

Ngu Ngu Ngu
28 tháng 3 2017 lúc 10:31

Bài 1:

Ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow1+1+1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)

\(\Rightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)

Vậy ta cần chứng minh: \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)

Áp dụng BĐT Cauchy cho \(\frac{a}{b}\) và \(\frac{b}{a}\)\(\frac{a}{c}\) và \(\frac{c}{a}\)\(\frac{b}{c}\) và \(\frac{c}{b}\) ta có:

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}+\frac{b}{a}\ge2\left(1\right)\\\frac{a}{c}+\frac{c}{a}\ge2\left(2\right)\\\frac{b}{c}+\frac{c}{b}\ge2\left(3\right)\end{cases}}\)

Từ \(\left(1\right);\left(2\right)\) và \(\left(3\right)\)

\(\Rightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\) (luôn đúng)

Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (Đpcm)

Nguyen Thi Bich Huong
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
T.Thùy Ninh
6 tháng 6 2017 lúc 11:01

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)

\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)

\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)

Mai Phạm Phương
18 tháng 8 2017 lúc 18:11

a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)

= a3+b3+a3-b3 = 2a3

b) a3+b3

= (a+b)(a2-ab+b2)

= (a+b)(a2- 2ab+b2)+ab

= (a+b)(a2-b2)+ab

obito
12 tháng 10 2017 lúc 21:54

a. Biến đổi vế trái:

(a+b)(a2−ab+b2)+(a−b)(a2+ab+b2)=a3+b3+a3−b3=2a3

=>VT bằng VP (đpcm)

b. Biến đổi vế phải:

(a+b)[(a−b)2+ab]=(a+b)[a2−2ab+b2+ab]

=(a+b)(a2−ab+b2)=a3+b3

=>VP bằng VT (đpcm)

c. Biến đổi vế phải:

(ac+bd)2+(ad−bc)2=a2c2+2abcd+b2d2+a2d2−2abcd+b2c2

=a2c2+b2d2+a2d2+b2c2=c(a2+b2)+d2(a2+b2)=(a2+b2)(c2+d2)

=>VP bằng VT (đpcm)


trần xuân quyến
Xem chi tiết
em nhỏ 5 tuổi
25 tháng 5 2019 lúc 14:44

BĐT\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2+6\left(ab+bc+cd+da+bd+ca\right)\ge8\left(ab+bc+cd+da+bd+ca\right)\)

\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2-2\left(ab+bc+cd+da+bd+ca\right)\ge0\) (*)

Ta có: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd\)

\(d^2+a^2\ge2da;b^2+d^2\ge2bd;c^2+a^2\ge2ca\)

Cộng theo vế các BĐT trên suy ra \(3a^2+3b^2+3c^2+3d^2\ge2\left(ab+bc+cd+da+bd+ca\right)\)

Do vậy BĐT (*) đúng hay ta có đpcm.

P/s: EM còn khá dốt BĐT,mong được các anh chị chỉ bảo cho ạ!

Thắng Nguyễn
7 tháng 3 2018 lúc 18:36

Cần cù bù thông minh ^^

\(BDT\Leftrightarrow\frac{1}{9}\left(-3a+b+c+d\right)^2+\frac{2}{9}\left(2b-c-d\right)^2+\frac{2}{3}\left(c-d\right)^2\ge0\)

Hihi mình phân tích hơi nham nhở thông cảm nha :(

em nhỏ 5 tuổi
18 tháng 6 2019 lúc 14:15

Thử cách này xem sao:

BĐT \(\Leftrightarrow\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-d\right)^2+\left(b-d\right)^2+\left(c-d\right)^2}{3}\ge0\) (đúng)

Vậy ta có đpcm.

Nguyễn Quốc Gia Huy
Xem chi tiết
alibaba nguyễn
22 tháng 8 2017 lúc 7:06

Ta có:

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(a+2b+c\right)^2}+\frac{1}{\left(a+b+2c\right)^2}\)

\(\le\frac{1}{4\left(a+b\right)\left(a+c\right)}+\frac{1}{4\left(b+a\right)\left(b+c\right)}+\frac{1}{4\left(c+a\right)\left(c+b\right)}\)

\(=\frac{2\left(a+b+c\right)}{4\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Giờ ta cần chứng minh

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{9}{16\left(ab+bc+ca\right)}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Vậy ta có ĐPCM