CMR: Nếu A con B thì A giao B=A
CMR nếu B là con C thì A giao B là con của A giao C
Chứng minh rằng:
a) Nếu A con B thì A giao B = A
b) Nếu A con C và B con C thì ( A hợp B ) Con C
c) Nếu A Hợp B = A giao B thì A = B
d) Nếu A con B và A con C thì A con ( B giao C )
(Toán lớp 10 nha các pn)
Chứng minh rằng:
a) Nếu A con B thì A giao B = A
b) Nếu A con C và B con C thì ( A hợp B) con C
c) Nếu A hợp B = A giao B thì A = B
d) Nếu A con B và A con C thì A con ( B giao C)
Chứng minh rằng nếu A hợp C là tập con của B hợp C vừ A giao C lừ tập con của B giáo C thì A là tập con của B
ta có :
Chứng minh rằng nếu C là tập hợp con của A và c là tập hợp con của B thì C là tập hợp con của A giao B
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
Chứng minh A con B và A con C thì A con ( B giao C)
CMR: a) Nếu a/b >1 thì a/b > a+c/b+c
b) Nếu a/b <1 thì a/b < a+c/b+c
CMR nếu a/b=b/c=c/a thì a=b=c
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
=> \(\dfrac{a}{b}=1\Rightarrow a=b\)
=> \(\dfrac{b}{c}=1\Rightarrow b=c\)
=>\(\dfrac{c}{a}=1\Rightarrow c=a\)
Vậy a=b=c
Dùng tỉ lệ thức em ha
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
Suy ra\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=1\) Từ đó suy ra a=b=c